0000000000255058

AUTHOR

Jean-pierre Wigneron

Calibrating the effective scattering albedo in the SMOS algorithm: some first results

International audience; This study focuses on the calibration of the effective scattering albedo (ω) of vegetation in the soil moisture (SM) retrieval at L-Band. Currently, in the SMOS Level 2 and 3 algorithms, the value of ω is set to 0 for low vegetation and ∼ 0.06 – 0.08 for forests. Different parameterizations of vegetation (in terms of ω values) were tested in this study. The possibility of combining soil roughness and vegetation contributions as a single parameter (“combined” method) leads to an important simplification in the algorithm and was also evaluated here. Following these assumptions, retrieved values of SMOS SM were compared with SM data measured over many in situ sites worl…

research product

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

research product

A coupled model to simulate spectral reflectances, thermal infrared emission and microwave emission of a vegetation canopy

National audience

research product

Evaluating roughness effects on C-band AMSR-E observations

International audience; The usefulness of microwave remote sensing to retrieve near-surface soil moisture has already been demonstrated in many studies. However, obtaining high quality estimates of soil moisture is influenced by many effects from soil, vegetation and atmosphere; one of the key parameters is surface roughness. This research focusses on a semi-empirical method to evaluate the roughness effects from space borne observations. Global maps of roughness effects are evaluated at C-band from AMSR-E measurements.

research product

Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements

Soil moisture (SM) is a key state variable in understanding the climate system through its control on the land surface energy, water budget partitioning, and the carbon cycle. Monitoring SM at regional scale has become possible thanks to microwave remote sensing. In the past two decades, several satellites were launched carrying on board either radiometer (passive) or radar (active) or both sensors in different frequency bands with various spatial and temporal resolutions. Soil moisture algorithms are in rapid development and their improvements/revisions are ongoing. The latest SM retrieval products and versions of products that have been recently released are not yet, to our knowledge, com…

research product

Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series

International audience; In mountain forest ecosystems where elevation gradients are prominent, temperature gradient-based phonological variability can be high. However, there are few studies that assess the capability of remote sensing observations to monitor ecosystem phenology along elevation gradients, despite their relevance under climate change. We investigated the potential of medium resolution remotely sensed data to monitor the elevation variations in the seasonal dynamics of a temperate deciduous broadleaf forested ecosystem. Further, we explored the impact of elevation on the onset of spring leafing. This study was based on the analysis of multi-annual time-series of VEGETATION da…

research product

First Retrievals of ASCAT-IB VOD (Vegetation Optical Depth) at Global Scale

Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better …

research product

A combined optical-microwave method to retrieve soil moisture over vegetated areas

A simple approach for correcting for the effect of vegetation in the estimation of the surface soil moisture (wS) from L-band passive microwave observations is presented in this study. The approach is based on semi-empirical relationships between soil moisture and the polarized reflectivity including the effect of the vegetation optical depth which is parameterized as a function of the normalized vegetation difference index (NDVI). The method was tested against in situ measurements collected over a grass site from 2004 to 2007 (SMOSREX experiment). Two polarizations (horizontal/vertical) and five incidence angles (20◦, 30◦, 40◦, 50◦, and 60◦) were considered in the analysis. The best wS est…

research product

The CoSMOS L-band experiment in Southeast Australia

The CoSMOS (Campaign for validating the Operation of the Soil Moisture and Ocean Salinity mission) campaign was conducted during November of 2005 in the Goulburn River Catchment, in SE Australia. The main objective of CoSMOS was to obtain a series of L-band measurements from the air in order to validate the L-band emission model that will be used by the SMOS (Soil Moisture and Ocean Salinity) ground segment processor. In addition, the campaign was designed to investigate open questions including the Sun-glint effect over land, the application of polarimetric measurements over land, and to clarify the importance of dew and interception for soil moisture retrievals. This paper summarises the …

research product

Evaluating the impact of roughness in soil moisture and optical thickness retrievals over the VAS area

International audience

research product

SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product

© 2017 by the authors. The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphère). One of the main go…

research product

First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region

Abstract The SMOS (Soil Moisture and Ocean Salinity) mission was launched on November 2, 2009. Over the land surfaces, simultaneous retrievals of surface soil moisture (SM) and vegetation characteristics made from the multi-angular and dual polarization SMOS observations are now available from Level-2 (L2) products delivered by the European Space Agency (ESA). Therefore, first analyses evaluating the SMOS observations in terms of Brightness Temperatures (TB) and L2 products (SM and vegetation optical depth TAU) can be carried out over several calibration/validation (cal/val) sites selected by ESA over all continents. This study is based on SMOS observations and in situ measurements carried …

research product

CAROLS campaigns 2009: First Results

International audience; The CAROLS, L band radiometer, is built and designed as a copy of EMIRAD II radiometer of DTU team. It is a Correlation radiometer with direct sampling and fully polarimetric (i.e 4 Stockes). It will be used in conjunction with other airborne instruments (in particular the C-Band scatterometer (STORM) and IEEEC GPS system, Infrared CIMEL radiometer and one visible camera), in coordination with in situ field campaigns for SMOS CAL/VAL. The instruments are implemented on board the French research airplane ATR42. A scientific campaign with thirteen flights is realized over south-western France, Valencia site and Bay of Biscay (Atlantic Ocean) in spring 2009. In order to…

research product

Modelling soil moisture at SMOS scale by use of a SVAT model over the Valencia Anchor Station

16 páginas, 9 figuras, 5 tablas.

research product

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

research product

Two-year global simulation of L-band brightness temperatures over land

International audience; This letter presents a synthetic L-band (1.4 GHz) multiangular brightness temperature dataset over land surfaces that was simulated at a half-degree resolution and at the global scale. The microwave emission of various land-covers (herbaceous and woody vegetation, frozen and unfrozen bare soil, snow, etc.) was computed using a simple model [L-band Microwave Emission of the Biosphere (L-MEB)] based on radiative transfer equations. The soil and vegetation characteristics needed to initialize the L-MEB model were derived from existing land-cover maps. Continuous simulations from a land-surface scheme for 1987 and 1988 provided time series of the main variables driving t…

research product

The EuroSTARRS airborne campaign in support of the SMOS mission: first results over land surfaces

A number of experiments using ground-based and airborne sensors have shown the high potential of L-band passive microwave radiometry for estimating and monitoring surface soil moisture. This has led to the Soil Moisture and Ocean Salinity (SMOS) mission, a European Space Agency (ESA) Earth Explorer Opportunity mission. SMOS has the objective to observe soil moisture over land and sea surface salinity over sea, both key parameters for atmospheric, oceanographic and hydrological predictive models. In preparation of SMOS, the EuroSTARRS airborne campaign was carried out in November 2001. Multi-angular measurements of the surface brightness temperature at L-band (1.4 GHz) at vertical polarizati…

research product

Analysis of the radar vegetation index and assessment of potential for improvement

The Radar Vegetation Index (RVI) is widely applied to indicate vegetation cover. The index includes the backscattering intensities of co- and cross-polarization that do not only contain information coming from vegetation scattering at longer wavelength (L-band), but also from the soil underneath. A forward modelling approach using active and passive microwave-derived parameters to obtain the scattering contribution of the soil is pursued. The idea of this research study is a subtraction of the attenuated soil scattering contribution from the measured backscattering intensities, to provide a clean vegetation-based solution, called improved RVI (RVII). For latter analysis, the vegetation volu…

research product

Analyzing the impact of using the SRP (Simplified roughness parameterization) method on soil moisture retrieval over different regions of the globe

International audience; This paper focuses on a new approach to account for soil roughness effects in the retrieval of soil moisture (SM) at L-band in the framework of the SMOS (Soil Moisture and Ocean Salinity) mission: the Simplified Roughness Parameterization (SRP). While the classical retrieval approach considers SM and τ nad (vegetation optical depth) as retrieved parameters, this approach is based on the retrieval of SM and the TR parameter combining τ nad and soil roughness (TR τ nad + Hr /2). Different roughness parameterizations were tested to find the best correlation (R), bias and unbiased RMSE (ubRMSE) when comparing homogeneous retrievals of SM and in situ SM measurements carri…

research product

The SMOS mediterranean ecosystem L-band characterisation experiment (MELBEX) over natural shrubs

10 páginas, 5 figuras, 7 tablas.

research product

Alternate Inrae-Bordeaux VOD Indices from SMOS, AMSR2 and ASCAT: Overview of Recent Developments

International audience; Vegetation optical depth (VOD) is used to parameterize microwave extinction effects within the vegetation layer. Many studies have showed VOD presents interesting features for applications in ecology, water and carbon cycles, and VOD is only marginally impacted by signal disturbances and artefacts from atmospheric, cloud and sun illumination effects. As soil moisture (and not VOD) has generally been the main factor of interest in retrieval studies from microwave observations, there is room for improvement in the retrieved VOD products. In this context, INRAE Bordeaux recently developed alternate VOD products from the SMOS, AMSR2 and ASCAT sensors, by addressing speci…

research product

A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm

Abstract This study focuses on the calibration of the effective vegetation scattering albedo (ω) and surface soil roughness parameters (H R , and N Rp , p = H,V) in the Soil Moisture (SM) retrieval from L-band passive microwave observations using the L-band Microwave Emission of the Biosphere (L-MEB) model. In the current Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2), v620, and Level 3 (L3), v300, SM retrieval algorithms, low vegetated areas are parameterized by ω = 0 and H R  = 0.1, whereas values of ω = 0.06 − 0.08 and H R  = 0.3 are used for forests. Several parameterizations of the vegetation and soil roughness parameters (ω, H R and N Rp , p = H,V) were tested in this study, tre…

research product

Retrievals of soil moisture and optical depth from CAROLS

International audience; We propose in this paper to evaluate a method to retrieve soil moisture (SM) and vegetation optical thickness, in areas of unknown roughness and unknown vegetation water content in view of operational applications, by using airborne Tb measurements acquired in South-West of France. Results are compared to in situ measurements, manual and automatic ones included in SMOSmania network, in the South-West of France.

research product

Interannual Variability of Biomass (SMOS Vegetation Optical Depth) Over the Contiguous United States

Interannual variability in biomass represented by SMOS vegetation optical depth (VOD) and precipitation was assessed over the Contiguous United States. The greatest interannual variability in both VOD and precipitation occurred in shrubs and herbaceous (grasslands), with forests the least variable. At a continental scale, VOD was strongly correlated with annual precipitation. Results showed a significant correlation coefficient (∼ 0.93) between interannual variability of precipitation and biomass, indicating that the interannual variability of precipitation could be a good predictor of the interannual variability of biomass.

research product

Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations

Quantifying roughness effects on ground surface emissivity is an important step in obtaining high-quality soil moisture products from large-scale passive microwave sensors. In this study, we used a semi-empirical method to evaluate roughness effects (parameterized here by the parameter) on a global scale from AMSR-E (Advanced Microwave Scanning Radiometer for EOS) observations. AMSR-E brightness temperatures at 6.9 GHz obtained from January 2009 to September 2011, together with estimations of soil moisture from the SMOS (Soil Moisture and Ocean Salinity) L3 products and of soil temperature from ECMWF’s (European Centre for Medium-range Weather Forecasting) were used as inputs in a retrieval…

research product

SMOS-IC : a revised SMOS product based on a new effective scattering albedo and soil roughness parameterization

International audience; This study presents a new SMOS (Soil Moisture and Ocean Salinity) soil moisture (SM) product based on a different scattering albedo and soil roughness parameterization: the SMOS-IC (SMOS INRA-CESBIO) data set. In this study, several parameterizations of the vegetation and soil roughness parameters (co, H-R and N-RP, P = H, V) were tested and the retrieved SM was compared against in situ observations obtained from the International Soil Moisture Network (ISMN). Firstly, values of omega = 0.10, H-R = 0.4 and N-RP = -1 (P = H, V) were found globally. Secondly, a calibration of these parameters was obtained for the different land cover categories of the International Geo…

research product

Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field

Abstract The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and vegetation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for soil roughness effects (…

research product

L-Band radiative properties of vine vegetation at the MELBEX III SMOS Cal/Val Site

Radiative properties at 1.4 GHz of vine vegetation are investigated by measuring brightness temperatures with the ETH L-band Radiometer II (ELBARA II) operated on a tower at the Mediterranean Ecosystem L-band Characterisation Experiment III (MELBEX III) field site in Spain. To this aim, experiments with and without a reflecting foil placed under the vines were performed for the vegetation winter and summer states, respectively, to provide prevailingly information on vegetation transmissivities. The resulting parameters, which can be considered as "ground truth" for the MELBEX III vineyard, were retrieved from brightness temperature at horizontal and vertical polarization measured at observa…

research product

Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA

The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular, dual-polarised brightness temperatures at 1.4 GHz, from which global soil moisture and vegetation optical depth (tau) products are retrieved. This paper presents a study of SMOS' tau product in 2010 and 2011 for crop zones of the USA. Retrieved tau values for 504 crop nodes were compared to optical/IR vegetation indices from the MODES (Moderate Resolution Imaging Spectroradiometer) satellite sensor, including the Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVE), Leaf Area Index (LAI), and a Normalised Difference Water Index (NOW!) product. tau values were observed to increase during the…

research product

ALiBi : un exemple de modèle de transferts sol-végétation-atmosphère

National audience

research product

Global Scale IB AMSR2 Vegetation Optical Depth at X-Band

Vegetation Optical Depth (VOD) plays an increasingly important role in studying global carbon, water and energy transformation [1], [2]. This study explores the performance of the X-MEB (X-band microwave emission of the biosphere) model at global scale. Similar to the L-MEB model, the X-MEB model, built by INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement) Bordeaux, aims to retrieve VOD (referred to as IB X-VOD) at X-band. To avoid the ill-posed problem caused by retrieving two parameters of interest (soil moisture (SM) and VOD) from mono-angular and dual-polarized observations (AMSR2), which are strongly correlated, we used the ERA5 SM product as a…

research product

CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer--STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic O…

research product