0000000000266909

AUTHOR

Roberto Livrea

Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems

We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…

research product

A sequence of positive solutions for sixth-order ordinary nonlinear differential problems

Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.

research product

Four solutions for fractional p-Laplacian equations with asymmetric reactions

We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.

research product

Three solutions for a two-point boundary value problem with the prescribed mean curvature equation

The existence of at least three classical solutions for a parametric ordinary Dirichlet problem involving the mean curvature operator are established. In particular, a variational approach is proposed and the main results are obtained simply requiring the sublinearity at zero of the considered nonlinearity.

research product

Three solutions for parametric problems with nonhomogeneous (a,2)-type differential operators and reaction terms sublinear at zero

Abstract We consider parametric Dirichlet problems driven by the sum of a Laplacian and a nonhomogeneous differential operator ( ( a , 2 ) -type equation) and with a reaction term which exhibits arbitrary polynomial growth and a nonlinear dependence on the parameter. We prove the existence of three distinct nontrivial smooth solutions for small values of the parameter, providing sign information for them: one is positive, one is negative and the third one is nodal.

research product

Some recent results on a singular p-laplacian equations

Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.

research product

Multiplicity theorems for the Dirichlet problem involving the p-Laplacian

Multiplicity theorems for the Dirichlet problem involving the p-Laplacian were proved using variational approach. It was shown that there existed an open interval and a positive real number, and each problem admits at least three weak solutions. Results on the existence of at least three weak solutions for the Dirichlet problems were established.

research product

Nonlinear elliptic equations with asymmetric asymptotic behavior at $pminfty$

We consider a nonlinear, nonhomogeneous Dirichlet problem with reaction which is asymptotically superlinear at $+infty$ and sublinear at $-infty$. Using minimax methods together with suitable truncation techniques and Morse theory, we show that the problem has at least three nontrivial solutions one of which is negative.

research product

Multiplicity of positive solutions for a degenerate nonlocal problem with p-Laplacian

Abstract We consider a nonlinear boundary value problem with degenerate nonlocal term depending on the L q -norm of the solution and the p-Laplace operator. We prove the multiplicity of positive solutions for the problem, where the number of solutions doubles the number of “positive bumps” of the degenerate term. The solutions are also ordered according to their L q -norms.

research product

Periodic solutions for a class of second-order Hamiltonian systems

Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence result of two distinct periodic solutions is given.© 2005 Texas State University - San Marcos.

research product

Existence of three solutions for a quasilinear two point boundary value problem

In this paper we deal with the existence of at least three classical solutions for the following ordinary Dirichlet problem:¶¶ $ \left\{\begin{array}{ll} u'' + \lambda h(u')f(t,\:u) = 0\\ u(0) = u(1) = 0.\\\end{array}\right.\ $ ¶¶Our main tool is a recent three critical points theorem of B. Ricceri ([10]).

research product

Existence of two solutions for singular Φ-Laplacian problems

AbstractExistence of two solutions to a parametric singular quasi-linear elliptic problem is proved. The equation is driven by theΦ\Phi-Laplacian operator, and the reaction term can be nonmonotone. The main tools employed are the local minimum theorem and the Mountain pass theorem, together with the truncation technique. GlobalC1,τ{C}^{1,\tau }regularity of solutions is also investigated, chiefly viaa prioriestimates and perturbation techniques.

research product

Some remarks on nonsmooth critical point theory

A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.

research product

Nonlinear nonhomogeneous Neumann eigenvalue problems

We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator with a reaction which is $(p-1)$-superlinear near $\pm\infty$ and exhibits concave terms near zero. We show that for all small values of the parameter, the problem has at least five solutions, four of constant sign and the fifth nodal. We also show the existence of extremal constant sign solutions.

research product

Positive solutions of Dirichlet and homoclinic type for a class of singular equations

Abstract We study a nonlinear singular boundary value problem and prove that, depending on a relationship between exponents of power terms, the problem has either solutions of Dirichlet type or homoclinic solutions. We make use of shooting techniques and lower and upper solutions.

research product

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.

research product

Triple solutions for nonlinear elliptic problems driven by a non-homogeneous operator

Abstract Some multiplicity results for a parametric nonlinear Dirichlet problem involving a nonhomogeneous differential operator of p -Laplacian type are given. Via variational methods, the article furnishes new contributions and completes some previous results obtained for problems considering other types of differential operators and/or nonlinear terms satisfying different asymptotic conditions.

research product

Some recent results on singular $ p $-Laplacian systems

Some recent existence, multiplicity, and uniqueness results for singular p-Laplacian systems either in bounded domains or in the whole space are presented, with a special attention to the case of convective reactions. A extensive bibliography is also provided.

research product

Some notes on a superlinear second order Hamiltonian system

Variational methods are used in order to establish the existence and the multiplicity of nontrivial periodic solutions of a second order dynamical system. The main results are obtained when the potential satisfies different superquadratic conditions at infinity. The particular case of equations with a concave-convex nonlinear term is covered.

research product

Variational differential inclusions without ellipticity condition

The paper sets forth a new type of variational problem without any ellipticity or monotonicity condition. A prototype is a differential inclusion whose driving operator is the competing weighted $(p,q)$-Laplacian $-\Delta_p u+\mu\Delta_q u$ with $\mu\in \mathbb{R}$. Local and nonlocal boundary value problems fitting into this nonstandard setting are examined.

research product

Infinitely many periodic solutions for a second-order nonautonomous system

The existence of infinitely many solutions for a second-order nonautonoumous system was investigated. Some multiplicity results for problem (P) under very different assumptions on the potential G were established. It was shown that infinitely many solutions follow from a variational principle by B. Ricceri.

research product

Multiple periodic solutions for Hamiltonian systems with not coercive potential

Under an appropriate oscillating behavior of the nonlinear term, the existence of infinitely many periodic solutions for a class of second order Hamiltonian systems is established. Moreover, the existence of two non-trivial periodic solutions for Hamiltonian systems with not coercive potential is obtained, and the existence of three periodic solutions for Hamiltonian systems with coercive potential is pointed out. The approach is based on critical point theorems. © 2009 Elsevier Inc. All rights reserved.

research product

Infinitely many solutions for a class of differential inclusions involving the $p$-biharmonic

The existence of inffinitely many solutions for diffierential inclusions depending on two positive parameters and involving the p- biharmonic operator is established via variational methods.

research product

Existence results for parametric boundary value problems involving the mean curvature operator

In this note we propose a variational approach to a parametric differential problem where a prescribed mean curvature equation is considered. In particular, without asymptotic assumptions at zero and at infinity on the potential, we obtain an explicit positive interval of parameters for which the problem under examination has at least one nontrivial and nonnegative solution.

research product

Critical points for nondifferentiable functions in presence of splitting

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

research product

Existence Results for Periodic Boundary Value Problems with a Convenction Term

By using an abstract coincidence point theorem for sequentially weakly continuous maps the existence of at least one positive solution is obtained for a periodic second order boundary value problem with a reaction term involving the derivative \(u'\) of the solution u: the so called convention term. As a consequence of the main result also the existence of at least one positive solution is obtained for a parameter-depending problem.

research product

Multiple solutions of second order Hamiltonian systems

Author(s): Bonanno, G; Livrea, R; Schechter, M | Abstract: The existence and the multiplicity of periodic solutions for a parameter dependent second order Hamiltonian system are established via linking theorems. A monotonicity trick is adopted in order to prove the existence of an open interval of parameters for which the problem under consideration admits at least two non trivial qualified solutions.

research product

A min-max principle for non-differentiable functions with a weak compactness condition

A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.

research product

Singular quasilinear elliptic systems involving gradient terms

Abstract In this paper we establish the existence of at least one smooth positive solution for a singular quasilinear elliptic system involving gradient terms. The approach combines the sub-supersolutions method and Schauder’s fixed point theorem.

research product

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

research product

Bounded Palais–Smale sequences for non-differentiable functions

The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.

research product

An existence result for a Neumann problem

The main result of this paper deals with the existence of at least one positive solution for a second order Neumann boundary value problem. Such a result is obtained by using an abstract coincidence point theorem that allows to get our conclusion under non standard conditions on the nonlinearity.

research product

Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.

research product

Resonant neumann equations with indefinite linear part

We consider aseminonlinear Neumann problem driven by the $p$-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $\pm \infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.

research product

Preface

This issue of Discrete and Continuous Dynamical Systems-Series S focuses on the qualitative analysis of some concrete nonlinear problems, e.g., ordinary, partial differential equations, systems and inclusions. The ten contributions collected here give an overview on some very recent results on the existence, multiplicity and sign information of the solutions of a wide range of nonlinear differential problems involving different boundary value conditions and operators in divergence form. In our opinion, the synergy pointed out here between the classical nonlinear analysis methods, like the critical point theory, sub-super solutions methods, truncation and comparison techniques, Morse theory,…

research product