0000000000275523
AUTHOR
Gottfried Unden
Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaqu…
Energy Transduction in Anaerobic Prokaryotes
Stimulation of Fe-S cluster insertion into apoFNR by Escherichia coli glutaredoxins 1, 2 and 3 in vitro.
Abstract The oxygen sensor fumarate nitrate reductase regu-lator (FNR) of Escherichia coli contains in the active (anaerobic)state a [4Fe–4S] 2þ cluster which is lost after exposure to O 2 .Inaerobically prepared apoFNR, or in FNR obtained by treatmentof [4Fe–4S] FNR with O 2 in vitro, intramolecular cysteinedisulfides are found, including the cysteine residues which serveas ligands for the Fe–S cluster. It is shown here that thereconstitution of [4Fe–4S] FNR from this form of aerobicapoFNR was preceded by a long lag phase when glutathione wasused as the reducing agent. Addition of E. coli glutaredoxins(Grx) 1, 2 or 3 decreased the lag phase greatly and stimulatedthe reconstitution rate slig…
Transport of C(4)-dicarboxylates in Wolinella succinogenes.
ABSTRACT C 4 -dicarboxylate transport is a prerequisite for anaerobic respiration with fumarate in Wolinella succinogenes , since the substrate site of fumarate reductase is oriented towards the cytoplasmic side of the membrane. W. succinogenes was found to transport C 4 -dicarboxylates (fumarate, succinate, malate, and aspartate) across the cytoplasmic membrane by antiport and uniport mechanisms. The electrogenic uniport resulted in dicarboxylate accumulation driven by anaerobic respiration. The molar ratio of internal to external dicarboxylate concentration was up to 10 3 . The dicarboxylate antiport was either electrogenic or electroneutral. The electroneutral antiport required the prese…
The NMR structure of the sensory domain of the membranous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli
The structure of the water-soluble, periplasmic domain of the fumarate sensor DcuS (DcuS-pd) has been determined by NMR spectroscopy in solution. DcuS is a prototype for a sensory histidine kinase with transmembrane signal transfer. DcuS belongs to the CitA family of sensors that are specific for sensing di- and tricarboxylates. The periplasmic domain is folded autonomously and shows helices at the N and the C terminus, suggesting direct linking or connection to helices in the two transmembrane regions. The structure constitutes a novel fold. The nearest structural neighbor is the Per-Arnt-Sim domain of the photoactive yellow protein that binds small molecules covalently. Residues Arg107, H…
CitA (citrate) and DcuS (C4-dicarboxylate) sensor kinases in thermophilic Geobacillus kaustophilus and Geobacillus thermodenitrificans
The thermophilic Geobacillus thermodenitrificans and Geobacillus kaustophilus are able to use citrate or C4-dicarboxylates like fumarate or succinate as the substrates for growth. The genomes of the sequenced Geobacillus strains (nine strains) each encoded a two-component system of the CitA family. The sensor kinase of G. thermodenitrificans (termed CitAGt) was able to replace CitA of Escherichia coli (CitAEc) in a heterologous complementation assay restoring expression of the CitAEc-dependent citC-lacZ reporter gene and anaerobic growth on citrate. Complementation was specific for citrate. The sensor kinase of G. kaustophilus (termed DcuSGk) was able to replace DcuSEc of E. coli. It respon…
Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production.
The heterofermentative lactic acid bacterium Oenococcus oeni requires pantothenic acid for growth. In the presence of sufficient pantothenic acid, glucose was converted by heterolactic fermentation stoichiometrically to lactate, ethanol and CO2. Under pantothenic acid limitation, substantial amounts of erythritol, acetate and glycerol were produced by growing and resting bacteria. Production of erythritol and glycerol was required to compensate for the decreasing ethanol production and to enable the synthesis of acetate. In ribose fermentation, there were no shifts in the fermentation pattern in response to pantothenate supply. In the presence of pantothenate, growing O. oeni contained at l…
Conversion of the sensor kinase DcuS ofEscherichia coliof the DcuB/DcuS sensor complex to the C4-dicarboxylate responsive form by the transporter DcuB
Summary The sensor kinase DcuS of Escherichia coli co-operates under aerobic conditions with the C4-dicarboxylate transporter DctA to form the DctA/DcuS sensor complex. Under anaerobic conditions C4-dicarboxylate transport in fumarate respiration is catalyzed by C4-dicarboxylate/fumarate antiporter DcuB. (i) DcuB interacted with DcuS as demonstrated by a bacterial two-hybrid system (BACTH) and by co-chromatography of the solubilized membrane-proteins (mHPINE assay). (ii) In the DcuB/DcuS complex only DcuS served as the sensor since mutations in the substrate site of DcuS changed substrate specificity of sensing, and substrates maleate or 3-nitropropionate induced DcuS response without affec…
Origin and phylogenetic relationships of [4Fe–4S]‐containing O 2 sensors of bacteria
The advent of environmental O2 about 2.5 billion years ago forced microbes to metabolically adapt and to develop mechanisms for O2 sensing. Sensing of O2 by [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion represents an ancient mechanism that is used by FNREc (Escherichia coli), FNRBs (Bacillus subtilis), NreBSa (Staphylococcus aureus) and WhiB3Mt (Mycobacterium tuberculosis). The phylogenetic relationship of these sensors was investigated. FNREc homologues are restricted to the proteobacteria and a few representatives from other phyla. Homologues of FNRBs and NreBSa are located within the bacilli, of WhiB3 within the actinobacteria. Archaea contain no homologues. The data reveal no similarity b…
The Fumarate/Succinate Antiporter DcuB of Escherichia coli Is a Bifunctional Protein with Sites for Regulation of DcuS-dependent Gene Expression
DcuB of Escherichia coli catalyzes C4-dicarboxylate/succinate antiport during growth by fumarate respiration. The expression of genes of fumarate respiration, including the genes for DcuB (dcuB) and fumarate reductase (frdABCD) is transcriptionally activated by C4-dicarboxylates via the DcuS-DcuR two-component system, comprising the sensor kinase DcuS, which contains a periplasmic sensing domain for C4-dicarboxylates. Deletion or inactivation of dcuB caused constitutive expression of DcuS-regulated genes in the absence of C4-dicarboxylates. The effect was specific for DcuB and not observed after inactivation of the homologous DcuA or the more distantly related DcuC transporter. Random and s…
Sensing of Oxygen by Bacteria
Function of DcuS from Escherichia coli as a Fumarate-stimulated Histidine Protein Kinase in Vitro
The two-component regulatory system DcuSR of Escherichia coli controls the expression of genes of C(4)-dicarboxylate metabolism in response to extracellular C(4)- dicarboxylates such as fumarate or succinate. DcuS is a membrane-integral sensor kinase, and the sensory and kinase domains are located on opposite sides of the cytoplasmic membrane. The intact DcuS protein (His(6)-DcuS) was overproduced and isolated in detergent containing buffer. His(6)-DcuS was reconstituted into liposomes made from E. coli phospholipids. Reconstituted His(6)-DcuS catalyzed, in contrast to the detergent-solubilized sensor, autophosphorylation by [gamma-(33)P]ATP with an approximate K(D) of 0.16 mm for ATP. Up t…
Polar Localization of a Tripartite Complex of the Two-Component System DcuS/DcuR and the Transporter DctA in Escherichia coli Depends on the Sensor Kinase DcuS
The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when …
Citrate Sensing by the C 4 -Dicarboxylate/Citrate Sensor Kinase DcuS of Escherichia coli : Binding Site and Conversion of DcuS to a C 4 -Dicarboxylate- or Citrate-Specific Sensor
ABSTRACT The histidine protein kinase DcuS of Escherichia coli senses C 4 -dicarboxylates and citrate by a periplasmic domain. The closely related sensor kinase CitA binds citrate, but no C 4 -dicarboxylates, by a homologous periplasmic domain. CitA is known to bind the three carboxylate and the hydroxyl groups of citrate by sites C1, C2, C3, and H. DcuS requires the same sites for C 4 -dicarboxylate sensing, but only C2 and C3 are highly conserved. It is shown here that sensing of citrate by DcuS required the same sites. Binding of citrate to DcuS, therefore, was similar to binding of C 4 -dicarboxylates but different from that of citrate binding in CitA. DcuS could be converted to a C 4 -…
The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli : role in signal transduction, dimer formation, and DctA interaction
The cytoplasmic PAS(C) domain of the fumarate responsive sensor kinase DcuS of Escherichia coli links the transmembrane to the kinase domain. PAS(C) is also required for interaction with the transporter DctA serving as a cosensor of DcuS. Earlier studies suggested that PAS(C) functions as a hinge and transmits the signal to the kinase. Reorganizing the PAS(C) dimer interaction and, independently, removal of DctA, converts DcuS to the constitutive ON state (active without fumarate stimulation). ON mutants were categorized with respect to these two biophysical interactions and the functional state of DcuS: type I-ON mutations grossly reorganize the homodimer, and decrease interaction with Dct…
Transmembrane signaling in the sensor kinase DcuS of Escherichia coli : A long-range piston-type displacement of transmembrane helix 2
The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane-water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21-41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181-201 in the OFF state and residues 185-205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results …
Functioning of DcuC as the C 4 -Dicarboxylate Carrier during Glucose Fermentation by Escherichia coli
ABSTRACT The dcuC gene of Escherichia coli encodes an alternative C 4 -dicarboxylate carrier (DcuC) with low transport activity. The expression of dcuC was investigated. dcuC was expressed only under anaerobic conditions; nitrate and fumarate caused slight repression and stimulation of expression, respectively. Anaerobic induction depended mainly on the transcriptional regulator FNR. Fumarate stimulation was independent of the fumarate response regulator DcuR. The expression of dcuC was not significantly inhibited by glucose, assigning a role to DcuC during glucose fermentation. The inactivation of dcuC increased fumarate-succinate exchange and fumarate uptake by DcuA and DcuB, suggesting a…
Succinate dehydrogenase functioning by a reverse redox loop mechanism and fumarate reductase in sulphate-reducing bacteria.
Sulphate- or sulphur-reducing bacteria with known or draft genome sequences (Desulfovibrio vulgaris, Desulfovibrio desulfuricans G20, Desulfobacterium autotrophicum [draft], Desulfotalea psychrophila and Geobacter sulfurreducens) all contain sdhCAB or frdCAB gene clusters encoding succinate : quinone oxidoreductases. frdD or sdhD genes are missing. The presence and function of succinate dehydrogenase versus fumarate reductase was studied. Desulfovibrio desulfuricans (strain Essex 6) grew by fumarate respiration or by fumarate disproportionation, and contained fumarate reductase activity. Desulfovibrio vulgaris lacked fumarate respiration and contained succinate dehydrogenase activity. Succi…
The Sensor Kinase DctS Forms a Tripartite Sensor Unit with DctB and DctA for Sensing C4-Dicarboxylates in Bacillus subtilis
The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indicati…
Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism.
Wolinella succinogenes performs oxidative phosphorylation with fumarate instead of O2 as terminal electron acceptor and H2 or formate as electron donors. Fumarate reduction by these donors ('fumarate respiration') is catalyzed by an electron transport chain in the bacterial membrane, and is coupled to the generation of an electrochemical proton potential (Deltap) across the bacterial membrane. The experimental evidence concerning the electron transport and its coupling to Deltap generation is reviewed in this article. The electron transport chain consists of fumarate reductase, menaquinone (MK) and either hydrogenase or formate dehydrogenase. Measurements indicate that the Deltap is generat…
Expression of the succinate dehydrogenase genes (sdhCAB) from the facultatively anaerobic paenibacillus macerans during aerobic growth
Paenibacillus (formerly Bacillus) macerans is capable of succinate oxidation under oxic conditions and fumarate reduction under anoxic conditions. The reactions are catalyzed by different enzymes, succinate dehydrogenase (Sdh) and fumarate reductase (Frd). The genes encoding Sdh (sdhCAB) were analyzed. The gene products of sdhA and sdhB were similar to the subunits of known Sdh and Frd enzymes. The hydrophobic subunit SdhC showed close sequence similarity to the class of Sdh/Frd enzymes containing diheme cytochrome b. From the sdhCAB gene cluster two transcripts were produced, one comprising sdhCAB, the other sdhAB. The transcripts were found only during aerobic growth, and the amount was d…
Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation.
The energetic parameters of Escherichia coli were analyzed for the aerobic/anaerobic transition. The electrochemical proton potential (delta p) across the cytoplasmic membrane was determined in the steady state of respiration with O2, nitrate, fumarate, dimethylsulfoxide (Me2SO), and for fermentation. With O2, a proton potential of -160 mV was obtained. For anaerobic respiration with nitrate, fumarate or Me2SO, delta p decreased only slightly by about 20 mV in contrast to earlier assumptions, whereas delta p dropped by approximately 40 mV during fermentation. Under all conditions, the membrane potential (delta psi) contributed the major portion to delta p. The cellular ATP levels were highe…
Availability of O 2 as a Substrate in the Cytoplasm of Bacteria under Aerobic and Microaerobic Conditions
ABSTRACT The growth rates of Pseudomonas putida KT2442 and mt-2 on benzoate, 4-hydroxybenzoate, or 4-methylbenzoate showed an exponential decrease with decreasing oxygen tensions (partial O 2 tension [pO 2 ] values). The oxygen tensions resulting in half-maximal growth rates were in the range of 7 to 8 mbar of O 2 (corresponding to 7 to 8 μM O 2 ) (1 bar = 10 5 Pa) for aromatic compounds, compared to 1 to 2 mbar for nonaromatic compounds like glucose or succinate. The decrease in the growth rates coincided with excretion of catechol or protocatechuate, suggesting that the activity of the corresponding oxygenases became limiting. The experiments directly establish that under aerobic and micr…
O2-sensing and O2-dependent gene regulation in facultatively anaerobic bacteria.
Availability of O2 is one of the most important regulatory signals in facultatively anaerobic bacteria. Various two- or one-component sensor/regulator systems control the expression of aerobic and anaerobic metabolism in response to O2. Most of the sensor proteins contain heme or Fe as cofactors that interact with O2 either by binding or by a redox reaction. The ArcA/ArcB regulator of aerobic metabolism in Escherichia coli may use a different sensory mechanism. In two-component regulators, the sensor is located in the cytoplasmic membrane, whereas one-component regulators are located in the cytoplasm. Under most conditions, O2 can readily reach the cytoplasm and could provide the signal in …
C4 ‐dicarboxylates and l ‐aspartate utilization by Escherichia coli K‐12 in the mouse intestine: l ‐aspartate as a major substrate for fumarate respiration and as a nitrogen source
C4-dicarboxylates, such as fumarate, L-malate and L-aspartate represent substrates for anaerobic growth of Escherichia coli by fumarate respiration. Here, we determined whether C4-dicarboxylate metabolism as well as fumarate respiration contribute to colonization of the mammalian intestinal tract. Metabolite profiling revealed that the murine small intestine contained high and low levels of L-aspartate and L-malate, respectively, whereas fumarate was nearly absent. Under laboratory conditions, addition of C4-dicarboxylate at concentrations corresponding to the levels of the C4-dicarboxylates in the small intestine (2.6 mMol/kg dry weight) induced the dcuBp-lacZ reporter gene (67% of maximal…
Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli
Type 1 fimbriae ofEscherichia colifacilitate attachment to the host mucosa and promote biofilm formation on abiotic surfaces. The transcriptional regulator LrhA, which is known as a repressor of flagellar, motility and chemotaxis genes, regulates biofilm formation and expression of type 1 fimbriae. Whole-genome expression profiling revealed that inactivation oflrhAresults in an increased expression of structural components of type 1 fimbriae.In vitro, LrhA bound to the promoter regions of the twofimrecombinases (FimB and FimE) that catalyse the inversion of thefimApromoter, and to the invertible element itself. TranslationallacZfusions with these genes and quantification offimEtranscript le…
A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates
Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), Dcu…
Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance.
The expression of the nuoA-N operon of Escherichia coli K-12, which encodes the proton-pumping NADH dehydrogenase I is modulated by growth phase-dependent regulation. Under respiratory growth conditions, expression was stimulated in early exponential, and to a lesser extent in late exponential and stationary growth phases. The stimulation in the early exponential growth phase was not observed in fis mutants, which are deficient for the growth phase-responsive regulator Fis. Neither the alternative sigma factor RpoS nor the integration host factor (IHF) are involved in growth phase-dependent regulation of this operon. When incubated with nuo promoter DNA, isolated Fis protein formed three re…
Bacterial sensor kinases using Fe–S cluster binding PAS or GAF domains for O2sensing
[4Fe-4S](2+) clusters are used by very diverse types of bacterial sensors for response to oxygen, including DNA-binding proteins of the CRP/FNR family and sensor kinases like NreB. In NreB the cluster is bound by an input domain of the PAS type. The [4Fe-4S](2+) cluster of NreB responds to O(2) by degradation to a [2Fe-2S](2+) cluster which is labile and decomposes. NreB constitutes together with AirS the NreB/AirS family of bacterial sensor kinases that contain PAS or GAF domains for binding of [4Fe-4S](2+) or [2Fe-2S](2+) clusters and oxygen sensing. The NreB/AirS family is related to the FixL sensor kinases that use hemeB binding PAS domains for oxygen sensing.
Oligomeric Sensor Kinase DcuS in the Membrane of Escherichia coli and in Proteoliposomes: Chemical Cross-linking and FRET Spectroscopy
The DcuSR (dicarboxylate uptake sensor and regulator) system of Escherichia coli is a typical two-component system consisting of a membranous sensor kinase (DcuS) and a cytoplasmic response regulator (DcuR) (11, 26, 48). DcuS responds to C4-dicarboxylates like fumarate, malate, or succinate (19). In the presence of the C4-dicarboxlates, the expression of the genes of anaerobic fumarate respiration (dcuB, fumB, and frdABCD) and of aerobic C4-dicarboxylate uptake (dctA) is activated. DcuS is a histidine protein kinase composed of two transmembrane helices with an intermittent sensory PAS domain in the periplasm (PASP) that was also termed the PDC domain (for PhoQ/DcuS/DctB/CitA domain or fold…
CitA/CitB Two-Component System Regulating Citrate Fermentation in Escherichia coli and Its Relation to the DcuS/DcuR System In Vivo
ABSTRACT Citrate fermentation by Escherichia coli requires the function of the citrate/succinate antiporter CitT ( citT gene) and of citrate lyase ( citCDEFXG genes). Earlier experiments suggested that the two-component system CitA/CitB, consisting of the membrane-bound sensor kinase CitA and the response regulator CitB, stimulates the expression of the genes in the presence of citrate, similarly to CitA/CitB of Klebsiella pneumoniae . In this study, the expression of a chromosomal citC-lacZ gene fusion was shown to depend on CitA/CitB and citrate. CitA/CitB is related to the DcuS/DcuR two-component system which induces the expression of genes for fumarate respiration in response to C 4 -di…
Fumarate dependent protein composition under aerobic and anaerobic growth conditions in Escherichia coli
Abstract In the absence of sugars, C4-dicarboxylates (C4DC) like fumarate represent important substrates for growth of Escherichia coli. Aerobically, C4DCs are oxidized to CO2 whereas anaerobically, C4DCs are used for fumarate respiration. In order to determine the impact of fumarate under aerobic and anaerobic conditions, proteomes of E. coli W3110 grown aerobically or anaerobically with fumarate and/or the non-C4DC substrate glycerol were comparatively profiled by nanoLC-MS/MS. Membrane enrichment allowed sensitive detection of membrane proteins. A total of 1657 proteins of which 646 and 374 were assigned to the cytosol or membrane, respectively, were covered. Presence of fumarate trigger…
Role of glutathione in the formation of the active form of the oxygen sensor FNR ([4Fe-4S]·FNR) and in the control of FNR function
The oxygen sensor regulator FNR (fumarate nitrate reductase regulator) of Escherichia coli is known to be inactivated by O2 as the result of conversion of a [4Fe-4S] cluster of the protein into a [2Fe-2S] cluster. Further incubation with O2 causes loss of the [2Fe-2S] cluster and production of apoFNR. The reactions involved in cluster assembly and reductive activation of apoFNR isolated under anaerobic or aerobic conditions were studied in vivo and in vitro. In a gshA mutant of E. coli that was completely devoid of glutathione, the O2 tension for the regulatory switch for FNR-dependent gene regulation was decreased by a factor of 4–5 compared with the wild-type, suggesting a role for glutat…
Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system.
ABSTRACT In Escherichia coli the genes encoding the anaerobic fumarate respiratory system are transcriptionally regulated by C 4 -dicarboxylates. The regulation is effected by a two-component regulatory system, DcuSR, consisting of a sensory histidine kinase (DcuS) and a response regulator (DcuR). DcuS and DcuR are encoded by the dcuSR genes (previously yjdHG ) at 93.7 min on the calculated E. coli map. Inactivation of the dcuR and dcuS genes caused the loss of C 4 -dicarboxylate-stimulated synthesis of fumarate reductase ( frdABCD genes) and of the anaerobic fumarate-succinate antiporter DcuB ( dcuB gene). DcuS is predicted to contain a large periplasmic domain as the supposed site for C 4…
In Vitro Analysis of the Two-Component System MtrB-MtrA from Corynebacterium glutamicum▿ †
ABSTRACT The two-component system MtrBA is involved in the osmostress response of Corynebacterium glutamicum . MtrB was reconstituted in a functionally active form in liposomes and showed autophosphorylation and phosphatase activity. In proteoliposomes, MtrB activity was stimulated by monovalent cations used by many osmosensors for the detection of hypertonicity. Although MtrB was activated by monovalent cations, they lead in vitro to a general stabilization of histidine kinases and do not represent the stimulus for MtrB to sense hyperosmotic stress.
Biology of Microorganisms on Grapes, in Must and in Wine
Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors
AbstractThe electron-transport chains of Escherichia coli are composed of many different dehydrogenases and terminal reductases (or oxidases) which are linked by quinones (ubiquinone, menaquinone and demethylmenaquinone). Quinol:cytochrome c oxido-reductase (`bc1 complex') is not present. For various electron acceptors (O2, nitrate) and donors (formate, H2, NADH, glycerol-3-P) isoenzymes are present. The enzymes show great variability in membrane topology and energy conservation. Energy is conserved by conformational proton pumps, or by arrangement of substrate sites on opposite sides of the membrane resulting in charge separation. Depending on the enzymes and isoenzymes used, the H+/e− rat…
Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators.
The promoter region and transcriptional regulation of the nuoA-N gene locus encoding the proton-translocating NADH:quinone oxidoreductase was analysed. A 560 bp intergenic region upstream of the nuo locus was followed by a gene (designated lrhA for LysR homologue A) coding for a gene regulator similar to those of the LysR family. Disruption of lrhA did not affect growth (respiratory or non-respiratory) or expression of nuo significantly. Transcriptional regulation of nuo by electron acceptors, electron donors and the transcriptional regulators ArcA, FNR, NarL and NarP, and by IHF (integration host factor) was studied with protein and operon fusions containing the promoter region up to base …
Inside Cover: Inhibition of Eimeria tenella CDK-Related Kinase 2: From Target Identification to Lead Compounds (ChemMedChem 8/2010)
DctA- and Dcu-independent transport of succinate in Escherichia coli : contribution of diffusion and of alternative carriers
Quintuple mutants of Escherichia coli deficient in the C4-dicarboxylate carriers of aerobic and anaerobic metabolism (DctA, DcuA, DcuB, DcuC, and the DcuC homolog DcuD, or the citrate/succinate antiporter CitT) showed only poor growth on succinate (or other C4-dicarboxylates) under oxic conditions. At acidic pH (pH 6) the mutants regained aerobic growth on succinate, but not on fumarate. Succinate uptake by the mutants could not be saturated at physiological succinate concentrations (≤5 mM), in contrast to the wild-type, which had a K m for succinate of 50 µM and a V max of 35 U/g dry weight at pH 6. At high substrate concentrations, the mutants showed transport activities (32 U/g dry weigh…
Role of secondary transporters and phosphotransferase systems in glucose transport by Oenococcus oeni.
ABSTRACT Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [ 14 C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation …
Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS
The mechanistic understanding of how membrane-embedded sensor kinases recognize signals and regulate kinase activity is currently limited. Here we report structure-function relationships of the multidomain membrane sensor kinase DcuS using solid-state NMR, structural modeling and mutagenesis. Experimental data of an individual cytoplasmic Per-Arnt-Sim (PAS) domain were compared to structural models generated in silico. These studies, together with previous NMR work on the periplasmic PAS domain, enabled structural investigations of a membrane-embedded 40-kDa construct by solid-state NMR, comprising both PAS segments and the membrane domain. Structural alterations are largely limited to prot…
L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐aspartase with GlnB
Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…
Conversion of the Sensor Kinase DcuS to the Fumarate Sensitive State by Interaction of the Bifunctional Transporter DctA at the TM2/PAS
The membrane-bound C4-dicarboxylate (C4DC) sensor kinase DcuS of Escherichia coli typically forms a protein complex with the C4DC transporter DctA. The DctA × DcuS complex is able to respond to C4DCs, whereas DcuS without DctA is in the permanent ON state. In DctA, the C-terminal helix 8b (H8b) serves as the site for interaction with DcuS. Here the interaction site in DcuS and the related structural and functional adaptation in DcuS were determined. The Linker connecting transmembrane helix 2 (TM2) and the cytosolic PASC (Per-ARNT-SIM) domain of DcuS, was identified as the major site for interaction with DctA-H8b by in vivo interaction studies. The Linker is known to convert the piston-type…
Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrat…
Requirement for the Proton-Pumping NADH Dehydrogenase I of Escherichia Coli in Respiration of NADH to Fumarate and Its Bioenergetic Implications
In Escherichia coli the expression of the nuo genes encoding the proton pumping NADH dehydrogenase I is stimulated by the presence of fumarate during anaerobic respiration. The regulatory sites required for the induction by fumarate, nitrate and O2 are located at positions around –309, –277, and downstream of –231 bp, respectively, relative to the transcriptional-start site. The fumarate regulator has to be different from the O2 and nitrate regulators ArcA and NarL. For growth by fumarate respiration, the presence of NADH dehydrogenase I was essential, in contrast to aerobic or nitrate respiration which used preferentially NADH dehydrogenase II. The electron transport from NADH to fumarate …
Thiosulfate Reduction in Salmonella enterica Is Driven by the Proton Motive Force
ABSTRACT Thiosulfate respiration in Salmonella enterica serovar Typhimurium is catalyzed by the membrane-bound enzyme thiosulfate reductase. Experiments with quinone biosynthesis mutants show that menaquinol is the sole electron donor to thiosulfate reductase. However, the reduction of thiosulfate by menaquinol is highly endergonic under standard conditions (Δ E °′ = −328 mV). Thiosulfate reductase activity was found to depend on the proton motive force (PMF) across the cytoplasmic membrane. A structural model for thiosulfate reductase suggests that the PMF drives endergonic electron flow within the enzyme by a reverse loop mechanism. Thiosulfate reductase was able to catalyze the combined …
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli
The function of the LysR-type regulator LrhA of Escherichia coli was defined by comparing whole-genome mRNA profiles from wild-type E. coli and an isogenic lrhA mutant on a DNA microarray. In the lrhA mutant, a large number (48) of genes involved in flagellation, motility and chemotaxis showed relative mRNA abundances increased by factors between 3 and 80. When a representative set of five flagellar, motility and chemotaxis genes was tested in lacZ reporter gene fusions, similar factors for derepression were found in the lrhA mutant. In gel retardation experiments, the LrhA protein bound specifically to flhD and lrhA promoter DNA (apparent K-D approximate to 20 nM), whereas the promoters of…
Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.
In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are…
Metabolism of Sugars and Organic Acids by Lactic Acid Bacteria from Wine and Must
Heterofermentative lactic acid bacteria (LAB) which are common in plant associated environments are found also in grape must and wine. In this environment specific strains predominate which are adapted to the low pH and high alcohol contents. Must and wine harbour the strictly heterofermentative Oenococcus oeni, Lactobacillus hilgardii and Lactobacillus brevis, and the facultatively heterofermentative Lactobacillus plantarum and Lactobacillus pentosus (Rodas et al. 2005). In addition homofermentative lactic acid bacteria of the Pediococcus group are able to grow in wine and must, but are normally found at low cell densities. The growth of lactic acid bacteria in wine depends largely on suga…
Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli
The function of the response regulator DcuR of the DcuSR fumarate two-component sensory system of Escherichia coli was analysed in vitro. Isolated DcuR protein was phosphorylated by the sensory histidine kinase, DcuS, and ATP, or by acetyl phosphate. In gel retardation assays with target promoters (frdA, dcuB, dctA), phosphoryl DcuR (DcuR-P) formed a high-affinity complex, with an apparent K D (app. K D) of 0·2–0·3 μM DcuR-P, and a low-affinity (app. K D 0·8–2 μM) complex. The high-affinity complex was formed only with promoters transcriptionally-regulated by DcuSR, whereas low-affinity binding was seen also with some DcuSR-independent promoters. The binding site of DcuR-P at the dcuB promo…
CyaC, a redox-regulated adenylate cyclase of Sinorhizobium meliloti with a quinone responsive diheme-B membrane anchor domain.
The nucleotide cyclase CyaC of Sinorhizobium meliloti is a member of class III adenylate cyclases (AC), a diverse group present in all forms of life. CyaC is membrane-integral by a hexahelical membrane domain (6TM) with the basic topology of mammalian ACs. The 6TM domain of CyaC contains a tetra-histidine signature that is universally present in the membrane anchors of bacterial diheme-B succinate-quinone oxidoreductases. Heterologous expression of cyaC imparted activity for cAMP formation from ATP to Escherichia coli, whereas guanylate cyclase activity was not detectable. Detergent solubilized and purified CyaC was a diheme-B protein and carried a binuclear iron-sulfur cluster. Single poin…
Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential.
Succinate dehydrogenases from bacteria and archaea using menaquinone (MK) as an electron acceptor (succinate/menaquinone oxidoreductases) contain, or are predicted to contain, two heme-B groups in the membrane-anchoring protein(s), located close to opposite sides of the membrane. All succinate/ubiquinone oxidoreductases, however, contain only one heme-B molecule. In Bacillus subtilis and other bacteria that use MK as the respiratory quinone, the succinate oxidase activity (succinate-->O2), and the succinate/menaquinone oxidoreductase activity were specifically inhibited by uncoupler (CCCP, carbonyl cyanide m-chlorophenylhydrazone) or by agents dissipating the membrane potential (valinomycin…
Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor
Bacteria use membrane-integral sensor histidine kinases (HK) to perceive stimuli and transduce signals from the environment to the cytosol. Information on how the signal is transmitted across the membrane by HKs is still scarce. Combining both liquid- and solid-state NMR, we demonstrate that structural rearrangements in the extracytoplasmic, citrate-sensing Per-Arnt-Sim (PAS) domain of HK CitA are identical for the isolated domain in solution and in a longer construct containing the membrane-embedded HK and lacking only the kinase core. We show that upon citrate binding, the PAS domain contracts, resulting in a shortening of the C-terminal β-strand. We demonstrate that this contraction of t…
Metabolism and Transport of Sugars and Organic Acids by Lactic Acid Bacteria from Wine and Must
Oenococcus oeni and other heterofermentative lactic acid bacteria from wine are able to grow at the expense of hexose and pentose sugars using the phosphoketolase pathway. Fermentation of hexoses is limited by low activity of the enzymes for ethanol production. Erythritol is formed as an alternative product, but the enzymes of the pathway are mostly unknown. Presence of fructose, citrate, pyruvate or O2 results in a shift of hexose fermentation to acetate at the expense of ethanol. O. oeni and other lactic acid bacteria are able to degrade organic acids of wine such as citrate, l-malate, pyruvate, l-tartrate and fumarate. The pathways for tartrate and fumarate degradation are known only in …
The oxygen-responsive transcriptional regulator FNR ofEscherichia coli : the search for signals and reactions
The FNR (fumarate and nitrate reductase regulation) protein of Escherichia coli is an oxygen-responsive transcriptional regulator required for the switch from aerobic to anaerobic metabolism. In the absence of oxygen, FNR changes from the inactive to the active state. The sensory and the regulatory functions reside in separate domains of FNR. The sensory domain contains a Fe-S cluster, which is of the [4Fe-4S]2+ type under anaerobic conditions. It is suggested that oxygen is supplied to the cytoplasmic FNR by diffusion and inactivates FNR by direct interaction. Reactivation under anoxic conditions requires cellular reductants. In vitro, the Fe-S cluster is converted to a [3Fe-4S]+ or a [2Fe…
A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus.
The cytoplasmic histidine sensor kinase NreB of Staphylococcus carnosus responds to O(2) and controls together with the response regulator NreC the expression of genes of nitrate/nitrite respiration. nreBC homologous genes were found in Staphylococcus strains and Bacillus clausii, and a modified form was found in some Lactobacillus strains. NreB contains a sensory domain with similarity to heme B binding PAS domains. Anaerobically prepared NreB of S. carnosus exhibited a (diamagnetic) [4Fe-4S](2+) cluster when assessed by Mossbauer spectroscopy. Upon reaction with air, the cluster was degraded with a half-life of approximately 2.5 min. No significant amounts of Mossbauer or EPR detectable i…
Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling
Many membrane-bound sensor kinases require accessory proteins for function. The review describes functional control of membrane-bound sensors by transporters. The C4-dicarboxylate sensor kinase DcuS requires the aerobic or anaerobic C4-dicarboxylate transporters DctA or DcuB, respectively, for function and forms DctA/DcuS or DcuB/DcuS sensor complexes. Free DcuS is in the permanent (ligand independent) ON state. The DctA/DcuS and DcuB/DcuS complexes, on the other hand, control expression in response to C4-dicarboxylates. In DctA/DcuS, helix 8b of DctA and the PASC domain of DcuS are involved in interaction. The stimulus is perceived by the extracytoplasmic sensor domain (PASP) of DcuS. The …
Solute transporters (DctA or DcuB) as structural coregulators in bacterial transporter/sensor complexes
The NreA Protein Functions as a Nitrate Receptor in the Staphylococcal Nitrate Regulation System
Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate w…
Decreasing the Number of Gaps in the Draft Assembly of theMannheimia Haemolytica M7/2 Genome Sequence
Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production inPseudomonas aeruginosa
Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused…
Properties and significance of apoFNR as a second form of air-inactivated [4Fe-4S]·FNR of Escherichia coli
The active form of the oxygen sensor fumarate nitrate reductase regulator (FNR) of Escherichia coli contains a [4Fe-4S] cluster which is converted to a [2Fe-2S] cluster after reaction with air, resulting in inactivation of FNR. Reaction of reconstituted [4Fe-4S].FNR with air resulted within 5 min in conversion to apoFNR. The rate was comparable to the rate known for [4Fe-4S].FNR/[2Fe-2S].FNR cluster conversion, suggesting that apoFNR is a product of [2Fe-2S].FNR decomposition and a final form of air-inactivated FNR in vitro. Formation of apoFNR and the redox state of the cysteinyl residues were determined in vitro by alkylation. FNR contains five cysteinyl residues, four of which (Cys20, Cy…
Cellular Concentrations of the Transporters DctA and DcuB and the Sensor DcuS of Escherichia coli and the Contributions of Free and Complexed DcuS to Transcriptional Regulation by DcuR.
ABSTRACT In Escherichia coli , the catabolism of C 4 -dicarboxylates is regulated by the DcuS-DcuR two-component system. The functional state of the sensor kinase DcuS is controlled by C 4 -dicarboxylates (like fumarate) and complexation with the C 4 -dicarboxylate transporters DctA and DcuB, respectively. Free DcuS (DcuS F ) is known to be constantly active even in the absence of fumarate, whereas the DcuB-DcuS and DctA-DcuS complexes require fumarate for activation. To elucidate the impact of the transporters on the functional state of DcuS and the concentrations of DcuS F and DcuB-DcuS (or DctA-DcuS), the absolute levels of DcuS, DcuB, and DctA were determined in aerobically or anaerobic…
Multiple Site-Specific Binding of Fis Protein to Escherichia coli nuoA-N Promoter DNA and its Impact on DNA Topology Visualised by Means of Scanning Force Microscopy
Experimental evidence for proton motive force-dependent catalysis by the diheme-containing succinate:menaquinone oxidoreductase from the Gram-positive bacterium Bacillus licheniformis.
In Gram-positive bacteria and other prokaryotes containing succinate:menaquinone reductases, it has previously been shown that the succinate oxidase and succinate:menaquinone reductase activities are lost when the transmembrane electrochemical proton potential, Deltap, is abolished by the rupture of the bacteria or by the addition of a protonophore. It has been proposed that the endergonic reduction of menaquinone by succinate is driven by the electrochemical proton potential. Opposite sides of the cytoplasmic membrane were envisaged to be separately involved in the binding of protons upon the reduction of menaquinone and their release upon succinate oxidation, with the two reactions linked…
Nitrate/oxygen co-sensing by an NreA/NreB sensor complex ofStaphylococcus carnosus
In Staphylococci maximal induction of nitrate reductase (narGHJI genes) requires anaerobic conditions, the presence of nitrate, and the NreABC regulatory system. Aerobic regulation is effected by the NreB/NreC two-component system. The role of the nitrate receptor NreA in nitrate induction and its relation to aerobic regulation was analysed in Staphylococcus carnosus. Nitrate induction of a narG-lip reporter gene required presence of NreB/NreC. When nreA was deleted, nitrate was no longer required for maximal induction, suggesting that NreA is a nitrate regulated inhibitor of NreB/NreC. In vitro, NreA and mutant NreA(Y95A) decreased NreB phosphorylation in part or completely, which was due …
Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation.
ABSTRACT The heterofermentative lactic acid bacteria Oenococcus oeni and Leuconostoc mesenteroides are able to grow by fermentation of pyruvate as the carbon source (2 pyruvate → 1 lactate + 1 acetate + 1 CO 2 ). The growth yields amount to 4.0 and 5.3 g (dry weight)/mol of pyruvate, respectively, suggesting formation of 0.5 mol ATP/mol pyruvate. Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase to acetyl coenzyme A, which is then converted to acetate, yielding 1 mol of ATP. For NADH reoxidation, one further pyruvate molecule is reduced to lactate. The enzymes of the pathway were present after growth on pyruvate, and genome analysis showed the presence of the corresponding st…
The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli.
ABSTRACT Escherichia coli ferments l -tartrate under anaerobic conditions in the presence of an additional electron donor to succinate. The carrier for l -tartrate uptake and succinate export and its relation to the general C 4 -dicarboxylate carriers DcuA, DcuB, and DcuC were studied. The secondary carrier TtdT, encoded by the ttdT (previously called ygjE ) gene, is required for the uptake of l -tartrate. The ttdT gene is located downstream of the ttdA and ttdB genes, encoding the l -tartrate dehydratase TtdAB. Analysis of mRNA by reverse transcription-PCR showed that ttdA , ttdB , and ttdT are cotranscribed. Deletion of ttdT abolished growth by l -tartrate and degradation of l -tartrate c…
Regulatory O 2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration
In an oxystat, the synthesis of the fermentation products formate, acetate, ethanol, lactate, and succinate of Escherichia coli was studied as a function of the O2 tension (pO2) in the medium. The pO2 values that gave rise to half-maximal synthesis of the products (pO0. 5) were 0.2-0.4 mbar for ethanol, acetate, and succinate, and 1 mbar for formate. The pO0.5 for the expression of the adhE gene encoding alcohol dehydrogenase was approximately 0.8 mbar. Thus, the pO2 for the onset of fermentation was distinctly lower than that for anaerobic respiration (pO0.5/= 5 mbar), which was determined earlier. An essential role for quinol oxidase bd in microaerobic growth was demonstrated. A mutant de…
DcuA of aerobically grownEscherichia coliserves as a nitrogen shuttle (L‐aspartate/fumarate) for nitrogen uptake
DcuA of Escherichia coli is known as an alternative C4 -dicarboxylate transporter for the main anaerobic C4 -dicarboxylate transporter DcuB. Since dcuA is expressed constitutively under aerobic and anaerobic conditions, DcuA was suggested to serve aerobically as a backup for the aerobic (DctA) transporter, or for the anabolic uptake of C4 -dicarboxylates. In this work, it is shown that DcuA is required for aerobic growth with L-aspartate as a nitrogen source, whereas for growth with L-aspartate as a carbon source, DctA was needed. Strains with DcuA catalyzed L-aspartate and C4 -dicarboxylate uptake (like DctA), or an L-aspartate/C4 -dicarboxylate antiport (unlike DctA). DcuA preferred L-asp…
Transcriptional regulation and energetics of alternative respiratory pathways in facultatively anaerobic bacteria
Abstract The facultatively anaerobic Escherichia coli is able to grow by aerobic and by anaerobic respiration. Despite the large difference in the amount of free energy that could maximally be conserved from aerobic versus anaerobic respiration, the proton potential and Δg ′ Phos are similar under both conditions. O 2 represses anaerobic respiration, and nitrate represses fumarate respiration. By this the terminal reductases of aerobic and anaerobic respiration are expressed in a way to obtain maximal H + e − ratios and ATP yields. The respiratory dehydrogenases, on the other hand, are not synthesized in a way to achieve maximal H + e − ratios. Most of the dehydrogenases of aerobic respirat…
C 4 -Dicarboxylate Utilization in Aerobic and Anaerobic Growth
C 4 -dicarboxylates and the C 4 -dicarboxylic amino acid l -aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D - and L -malate, L -aspartate, and L -tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C 4 -dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella ), utilization of C 4 -dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na + -dependent membrane-bound oxaloacetate decarbo…
Control of the bifunctional O 2 ‐sensor kinase NreB of Staphylococcus carnosus by the nitrate sensor NreA: Switching from kinase to phosphatase state
The NreB-NreC two-component system of Staphylococcus carnosus for O2 sensing cooperates with the accessory nitrate sensor NreA in the NreA-NreB-NreC system for coordinated sensing and regulation of nitrate respiration by O2 and nitrate. ApoNreA (NreA in the absence of nitrate) interacts with NreB and inhibits NreB autophosphorylation (and activation). NreB contains the phosphatase motif DxxxQ. The present study shows that NreB on its own was inactive for the dephosphorylation of the phosphorylated response regulator NreC (NreC-P), but co-incubation with NreB and NreA stimulated NreC-P dephosphorylation. Either the presence of NreA · NO 3 - instead of apoNreA or mutation of the phosphatase m…
C4-dicarboxylate carriers and sensors in bacteria
AbstractBacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H+- or Na+-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic …
Transport of Sugars and Sugar Alcohols by Lactic Acid Bacteria
Lactic acid bacteria (LAB) play an important role in the fermentation of beverages like wine and beer, and in the production of dairy products, sour dough, sausages and cheese. The knowledge of the genome sequence offers an insight into the metabolism of the bacteria and provides means to optimize the manufacturing of the products. By now genomes of several lactic acid bacteria are sequenced, including wine related bacteria Oenococcus oeni PSU-1, Pediococcus pentosaceus ATCC 25745, Leuconostoc mesenteroides ATCC 8293 (http://www.jgi.doe.gov/; Klaenhammer et al. 2002; Mills et al. 2005) and Lactobacillus plantarum WCFS1 (http://www.cmbi. ru.nl/plantarum/; http://www.lacplantcyc.nl/; Kleerebe…
Topology and accessibility of the transmembrane helices and the sensory site in the bifunctional transporter DcuB of Escherichia coli.
C(4)-Dicarboxylate uptake transporter B (DcuB) of Escherichia coli is a bifunctional transporter that catalyzes fumarate/succinate antiport and serves as a cosensor of the sensor kinase DcuS. Sites and domains of DcuB were analyzed for their topology relative to the cytoplasmic or periplasmic side of the membrane and their accessibility to the water space. For the topology studies, DcuB was fused at 33 sites to the reporter enzymes PhoA and LacZ that are only active when located in the periplasm or the cytoplasm, respectively. The ratios of the PhoA and LacZ activities suggested the presence of 10 or 11 hydrophilic loops, and 11 or 12 α-helical transmembrane domains (TMDs). The central part…
Interaction of theEscherichia colitransporter DctA with the sensor kinase DcuS: presence of functional DctA/DcuS sensor units
The aerobic Escherichia coli C(4) -dicarboxylate transporter DctA and the anaerobic fumarate/succinate antiporter DcuB function as obligate co-sensors of the fumarate responsive sensor kinase DcuS under aerobic or anaerobic conditions respectively. Overproduction under anaerobic conditions allowed DctA to replace DcuB in co-sensing, indicating their functional equivalence in this capacity. In vivo interaction studies between DctA and DcuS using FRET or a bacterial two-hybrid system (BACTH) demonstrated their interaction. DctA-YFP bound to an affinity column and was able to retain DcuS. DctA shows substantial sequence and secondary structure conservation to Glt(Ph), the Na(+)/glutamate sympo…
Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…
The sensor kinase DcuS of Escherichia coli: two stimulus input sites and a merged signal pathway in the DctA/DcuS sensor unit
Abstract The membrane-integral sensor kinase DcuS of Escherichia coli consists of a periplasmically located sensory PASP domain, transmembrane helices TM1 and TM2, a cytoplasmic PASC domain and the kinase domain. Stimulus (C4-dicarboxylate) binding at PASP is required to stimulate phosphorylation of the kinase domain, resulting in phosphoryl transfer to the response regulator DcuR. PASC functions as a signaling device or a relay in signal transfer from TM2 to the kinase. Phosphorylated DcuR induces the expression of the target genes. Sensing by DcuS requires the presence of the C4-dicarboxylate transporter DctA during aerobic growth. DctA forms a sensor unit with DcuS, and a short C-termina…
Sensing by the membrane-bound sensor kinase DcuS: exogenous versus endogenous sensing of C(4)-dicarboxylates in bacteria.
Bacteria are able to grow at the expense of both common (succinate, L-malate, fumarate and aspartate) and uncommon (L-tartrate and D-malate) C4-dicarboxylates, which are components of central metabolism. Two types of sensors/regulators responding to the C4-dicarboxylates function in Escherichia coli, Bacillus, Lactobacillus and related bacteria. The first type represents membrane-integral two-component systems, while the second includes cytoplasmic LysR-type transcriptional regulators. The difference in location and substrate specificity allows the exogenous induction of metabolic genes by common C4-dicarboxylates, and endogenous induction by uncommon C4-dicarboxylates. The two-component s…
Reduced Apo-Fumarate Nitrate Reductase Regulator (ApoFNR) as the Major Form of FNR in Aerobically Growing Escherichia coli▿
ABSTRACT Under anoxic conditions, the Escherichia coli oxygen sensor FNR (fumarate nitrate reductase regulator) is in the active state and contains a [4Fe-4S] cluster. Oxygen converts [4Fe-4S]FNR to inactive [2Fe-2S]FNR. After prolonged exposure to air in vitro, apoFNR lacking a Fe-S cluster is formed. ApoFNR can be differentiated from Fe-S-containing forms by the accessibility of the five Cys thiol residues, four of which serve as ligands for the Fe-S cluster. The presence of apoFNR in aerobically and anaerobically grown E. coli was analyzed in situ using thiol reagents. In anaerobically and aerobically grown cells, the membrane-permeable monobromobimane labeled one to two and four Cys res…
Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct)
The nucleotide sequences of two Escherichia coli genes, dcuA and dcuB (formerly designated genA and genF), have been shown to encode highly homologous products, M(r) 45,751 and 47,935 (434 and 446 amino acid residues) with 36% sequence identity (63% similarity). These proteins have a high proportion (approximately 61%) of hydrophobic residues and are probably members of a new group of integral inner membrane proteins. The locations of the dcu genes, one upstream of the aspartase gene (dcuA-aspA) and the other downstream of the anaerobic fumarase gene (fumB-dcuB), suggested that they may function in the anaerobic transport of C4-dicarboxylic acids. Growth tests and transport studies with mut…
O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli
With an oxystat, changes in the pattern of expression of FNR-dependent genes from Escherichia coli were studied as a function of the O2 tension (pO2) in the medium. Expression of all four tested genes was decreased by increasing O2. However, the pO2 values that gave rise to half-maximal repression (pO(0.5)) were dependent on the particular promoter and varied between 1 and 5 millibars (1 bar = 10(5) Pa). The pO(0.5) value for the ArcA-regulated succinate dehydrogenase genes was in the same range (pO(0.5) = 4.6 millibars). At these pO2 values, the cytoplasm can be calculated to be well supplied with O2 by diffusion. Therefore, intracellular O2 could provide the signal to FNR, suggesting that…
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics.
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topolog…
Differentiation of DctA and DcuS function in the DctA/DcuS sensor complex ofEscherichia coli: function of DctA as an activity switch and of DcuS as the C4-dicarboxylate sensor
Summary The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates. Consequently transport activity of DctA is not required for its function in the sensor complex. (ii) Effectors like fumarate induced expression of DctA/DcuS-dependent reporter genes (dcuB–lacZ) and served as substrates of DctA, whereas citrate ser…
C4-dicarboxylate metabolons: Interaction of C4-dicarboxylate transporters of Escherichia coli with cytosolic enzymes
AbstractMetabolons represent the structural organization of proteins for metabolic or regulatory pathways. Here the interaction of enzymes fumarase FumB and aspartase AspA with the C4-DC transporters DcuA and DcuB of Escherichia coli was tested by a bacterial two-hybrid (BACTH) assay in situ, or by co-chromatography (mSPINE). DcuB interacted strongly with FumB and AspA, and DcuA with AspA. The fumB-dcuB and the dcuA-aspA genes encoding the respective proteins are known for their colocalization on the genome and the production of co-transcripts. The data consistently suggest the formation of DcuB/FumB, DcuB/AspA and DcuA/AspA metabolons in fumarate respiration for the uptake of L-malate, or …
Staphylococcal NreB: an O2-sensing histidine protein kinase with an O2-labile iron-sulphur cluster of the FNR type
Summary The nreABC ( n itrogen re gulation) operon encodes a new staphylococcal two-component regulatory sys- tem that controls dissimilatory nitrate/nitrite reduc- tion in response to oxygen. Unlike other two- component sensors NreB is a cytosolic protein with four N-terminal cysteine residues. It was shown that both the NreB-cysteine cluster and Fe ions are required for function. Isolated NreB was converted to the active form by incubation with cysteine desul- phurase, ferrous ions and cysteine. This activation is typical for FeS-containing proteins and was reversed by oxygen. During reconstitution an absorption band at 420 nm and a yellow-brownish colour (typical for an FNR-type iron-sul…
Properties of transmembrane helix TM1 of the DcuS sensor kinase of Escherichia coli, the stator for TM2 piston signaling
Abstract The sensor kinase DcuS of Escherichia coli perceives extracellular fumarate by a periplasmic PASP sensor domain. Transmembrane (TM) helix TM2, present as TM2-TM2′ homo-dimer, transmits fumarate activation in a piston-slide across the membrane. The second TM helix of DcuS, TM1, is known to lack piston movement. Structural and functional properties of TM1 were analyzed. Oxidative Cys-crosslinking (CL) revealed homo-dimerization of TM1 over the complete membrane, but only the central part showed α-helical +3/+4 spacing of the CL maxima. The GALLEX bacterial two-hybrid system indicates TM1/TM1′ interaction, and the presence of a TM1-TM1′ homo-dimer is suggested. The peripheral TM1 regi…
Regulation of tartrate metabolism by TtdR and relation to the DcuS–DcuR-regulated C4-dicarboxylate metabolism of Escherichia coli
Escherichia coli catabolizes l-tartrate under anaerobic conditions to oxaloacetate by the use of l-tartrate/succinate antiporter TtdT and l-tartrate dehydratase TtdAB. Subsequently, l-malate is channelled into fumarate respiration and degraded to succinate by the use of fumarase FumB and fumarate reductase FrdABCD. The genes encoding the latter pathway (dcuB, fumB and frdABCD) are transcriptionally activated by the DcuS–DcuR two-component system. Expression of the l-tartrate-specific ttdABT operon encoding TtdAB and TtdT was stimulated by the LysR-type gene regulator TtdR in the presence of l- and meso-tartrate, and repressed by O2 and nitrate. Anaerobic expression required a functional fn…
Regulation of aerobic and anaerobic D-malate metabolism of Escherichia coli by the LysR-type regulator DmlR (YeaT).
ABSTRACT Escherichia coli K-12 is able to grow under aerobic conditions on d -malate using DctA for d -malate uptake and the d -malate dehydrogenase DmlA (formerly YeaU) for converting d -malate to pyruvate. Induction of dmlA encoding DmlA required an intact dmlR (formerly yeaT ) gene, which encodes DmlR, a LysR-type transcriptional regulator. Induction of dmlA by DmlR required the presence of d -malate or l - or meso -tartrate, but only d -malate supported aerobic growth. The regulator of general C 4 -dicarboxylate metabolism (DcuS-DcuR two-component system) had some effect on dmlA expression. The anaerobic l -tartrate regulator TtdR or the oxygen sensors ArcB-ArcA and FNR did not have a m…
Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus.
ABSTRACT The sensor kinase NreB from Staphylococcus carnosus contains an O 2 -sensitive [4Fe-4S] 2+ cluster which is converted by O 2 to a [2Fe-2S] 2+ cluster, followed by complete degradation and formation of Fe-S-less apo-NreB. NreB·[2Fe-2S] 2+ and apoNreB are devoid of kinase activity. NreB contains four Cys residues which ligate the Fe-S clusters. The accessibility of the Cys residues to alkylating agents was tested and used to differentiate Fe-S-containing and Fe-S-less NreB. In a two-step labeling procedure, accessible Cys residues in the native protein were first labeled by iodoacetate. In the second step, Cys residues not labeled in the first step were alkylated with the fluorescent…
Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases
SUMMARY Two-component signal-transducing systems are ubiquitously distributed communication interfaces in bacteria. They consist of a histidine kinase that senses a specific environmental stimulus and a cognate response regulator that mediates the cellular response, mostly through differential expression of target genes. Histidine kinases are typically transmembrane proteins harboring at least two domains: an input (or sensor) domain and a cytoplasmic transmitter (or kinase) domain. They can be identified and classified by virtue of their conserved cytoplasmic kinase domains. In contrast, the sensor domains are highly variable, reflecting the plethora of different signals and modes of sens…
Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions
The operation of the citric acid cycle of Escherichia coli during nitrate respiration (anoxic conditions) was studied by measuring end products and enzyme activities. Excretion of products other than CO2, such as acetate or ethanol, was taken as an indication for a non-functional cycle. From glycerol, approximately 0.3 mol acetate was produced; the residual portion was completely oxidized, indicating the presence of a partially active citric acid cycle. In an arcA mutant devoid of the transcriptional regulator ArcA, glycerol was completely oxidized with nitrate as an electron acceptor, demonstrating derepression and function of the complete pathway. Glucose, on the other hand, was excreted …
Oxygen regulated gene expression in facultatively anaerobic bacteria
In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlyin…
The Nature of the Stimulus and of the Fumarate Binding Site of the Fumarate Sensor DcuS of Escherichia coli
DcuS is a membrane-associated sensory histidine kinase of Escherichia coli specific for C(4) -dicarboxylates. The nature of the stimulus and its structural prerequisites were determined by measuring the induction of DcuS-dependent dcuB'-'lacZ gene expression. C(4)-dicarboxylates without or with substitutions at C2/C3 by hydrophilic (hydroxy, amino, or thiolate) groups stimulated gene expression in a similar way. When one carboxylate was replaced by sulfonate, methoxy, or nitro groups, only the latter (3-nitropropionate) was active. Thus, the ligand of DcuS has to carry two carboxylate or carboxylate/nitro groups 3.1-3.8 A apart from each other. The effector concentrations for half-maximal i…
Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds.
Apicomplexan parasites encompass several human- and animal-pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin-dependent kinases (CDKs) are key molecules in cell-cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK-like proteins, of which one—E. tenella CDK-related kinase 2 (EtCRK2)—has already been charact…
The fnr Gene of Bacillus licheniformis and the Cysteine Ligands of the C-Terminal FeS Cluster
Many of the O2-responsive gene regulators of bacteria are members of the fumarate nitrate reductase-cyclic AMP receptor protein family of transcriptional regulators (12, 13, 15, 17) with predicted structures similar to those of the cyclic AMP receptor protein (11). The Fnr (stands for fumarate nitrate reductase regulator) protein from Escherichia coli (FnrEc) controls the expression of a variety of genes, mainly of anaerobic respiration and metabolism (5, 13). It contains a N-terminal cluster of three essential cysteine residues which are supposed to bind together with Cys122 a [4Fe 4S]2+ cluster which is required for O2 sensing (4, 7, 8, 10, 16). A wide variety of gram-negative bacteria co…
The dcuD (former yhcL ) gene product of Escherichia coli as a member of the DcuC family of C4-dicarboxylate carriers: lack of evident expression
The dcuD gene (formerly yhcL) of Escherichia coli shows significant sequence similarity only to the dcuC gene of E. coli, which encodes a C4-dicarboxylate carrier (DcuC) that functions during anaerobic growth. Inactivation of dcuD had no effect on the growth of E. coli under a large number of conditions and led to no detectable changes in phenotype. Translational dcuD'-'lacZ gene fusions were not significantly expressed in the presence of dicarboxylates or monocarboxylates under oxic or anoxic conditions. Other potential substrates such as amino sugar derivatives, amino acids, and alpha-aspartyl dipeptides also did not lead to expression of dcuD. Changes in medium composition, pH, ionic str…
Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli
Signal transduction in prokaryotes is frequently accomplished by two-component regulatory systems in which a histidine protein kinase is the sensory component. Many of these sensory kinases control metabolic processes that do not show an obvious requirement for inhomogeneous distribution within bacterial cells. Here, the sensory kinases DcuS and CitA, two histidine kinases of Escherichia coli, were investigated. Both are membrane-integral and involved in the regulation of carboxylate metabolism. The two-component sensors were fused with yellow fluorescent protein (YFP) and live images of immobilized cells were obtained by confocal laser fluorescence microscopy. The fluorescence of the fusio…
Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate
In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The end product of nitrate and nitrite respiration was ammonia. No N2 or NO and only traces of N2O could be detected. O2 repressed the activity of nitrate and fumarate reductases and the fermentation of glucose, presumably at the transcription…