0000000000277070

AUTHOR

E. Pajuste

Spectrometric analysis of inner divertor materials of JET carbon and ITER-like walls

Abstract One of main reasons of the Joint European torus (JET) transformation from the carbon (JET-C) to ITER-like (JET-ILW) wall was high tritium retention of carbon. In order to compare the tritium retention, samples of analogous positions of the plasma-facing side of vertical tiles No. 3 of two campaigns: JET-C (2008–2009) and JET-ILW (2011–2012) were cut out. Temperature-programmed tritium desorption spectrometry in He + 0.1% H2 gas flow showed that JET-C sample without a tungsten coating had by a factor of >20 higher surface concentration of tritium than JET-ILW tungsten-coated sample: 4.9 × 1013 and 1.7–2.2 × 1012 T atoms/cm2 respectively. Installation of metallic plasma facing wall i…

research product

Radiation resistance of nanolayered silicon nitride capacitors

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

research product

Characterisation and radiolysis of modified lithium orthosilicate pebbles with noble metal impurities

Modified lithium orthosilicate (Li4SiO4) pebbles with additions of titanium dioxide (TiO2) are suggested as an alternative tritium breeding ceramic for the European solid breeder test blanket module. The noble metals – platinum (Pt), gold (Au) and rhodium (Rh), can be introduced into the modified Li4SiO4 pebbles during the melt-based process, due to the corrosion of Pt-Rh and Pt-Au alloy crucible components. In this study, the surface microstructure, chemical and phase composition of the modified Li4SiO4 pebbles with different contents of the noble metals was analysed. The influence of the noble metals on the radiolysis was evaluated after irradiation with accelerated electrons (E = 5 MeV),…

research product

Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed ‘three-ion’ scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen–deuterium mixtures.…

research product

Structural changes and distribution of accumulated tritium in the carbon based JET tiles

Abstract In this study the tritium distribution and the effect of structural changes thereon have been analyzed in the bulk of the tile selected from the JET Mark II SRP divertor. Tritium content has been analyzed by the full combustion technique [1] . The structure has been investigated by the method of Scanning Electron Microscopy. Tritium depth profiles have been measured at different poloidal positions. A high specific activity of tritium (up to 156 MBq g −1 ) was found at the plasma-facing surface. At some tile positions up to 98–99% of the T can be in the surface slice of 1 mm thickness, whereas in other poloidal positions there can be more T in the bulk than at the surface. The struc…

research product

Novel method for determination of tritium depth profiles in metallic samples

Tritium accumulation in fusion reactor materials is considered a serious radiological issue, therefore a lot of effort has been concentrated on the development of radiometric techniques. A novel method, based on gradual dissolution, for the determination of the total tritium content and its depth profiles in metallic samples is demonstrated. This method allows for the measurement of tritium in metallic samples after their exposure to a hydrogen and tritium mixture, tritium containing plasma or after irradiation with neutrons resulting in tritium formation. In this method, successive layers of metal are removed using an appropriate etching agent in the controlled regime and the amount of evo…

research product

Overview of the JET results

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in…

research product

Statistical methods for determining components non-liniarities, from thermoluminescent devices

Thermoluminescent (TLD) dosimeters enjoy wide usage due to low cost and simplicity of use. They have however large errors at high doses in mixed-radiation fields, where non-linear effects occur. Algorithms based on the Akaike criterion [1] are presented for determining the maximal (physically meaningful) polynomial order with which the non-linearities are modeled. This depends on the number of points existing on a curve and on the points' errors.

research product

Modelling glow curves of thermoluminescent radiometric devices

Thermoluminescent (TLD) radiation dosimeters enjoy wide usage due to low cost and simplicity of use. They however require complex device modelling in order to extract the measured dose. A new glow peak model and fit method are presented, that offer a more robust fit to the glow-curves and allows operators to enter visually inspectable parameters (rather than physical quantities difficult to estimate from the visual inspection of the glow curves themselves). Fits performed on the GLOCANIN-challenge's RefGlow-002 and RefGlow-009 [2] are presented, highlighting the good performance of the GEMINI C++ code written.

research product

Tritium in plasma-facing components of JET with the ITER-Like-Wall

research product

Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two campaigns of ITER-Like-Wall (ILW) in 2011-2012 (ILW1) and 2013-2014 (ILW2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma-facing-surfaces of the beryllium sampl…

research product

Evaluation of radiation stability of electron beam irradiated Nafion® and sulfonated poly(ether ether ketone) membranes

Proton exchange membranes (PEM), which have been commonly used in fuel cells have raised interest for the application in harsh environments involving ionizing radiation. Therefore, radiation stability and ability to sustain their functionality under the radiation environment are of great interest. Within this study, electron beam irradiation in dose range from 50 to 500kGy was used to evaluate the effects of radiation on the physico-chemical and mechanical properties of two types of PEM: commercial Nafion®117 and sulfonated poly(ether-ether-ketone) (SPEEK) with high degree of sulfonation (DS = 0.75±0.5). SPEEK membrane presented higher mechanical and thermal stability compared to that of Na…

research product

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

research product

Tritium retention in plasma facing materials of JET ITER-Like-Wall retrieved from the vacuum vessel in 2012 (ILW1), 2014 (ILW2) and 2016 (ILW3)

Abstract ITER-Like-Wall (ILW) project has been carried out at Joint European Torus (JET) to test plasma facing materials relevant to International Thermonuclear Experimental Reactor – ITER [1]. Limiters and an upper dump plate of the vacuum vessel are made of bulk beryllium tiles, whereas for the divertor bulk tungsten and tungsten-coated carbon fibre (CFC) composite tiles are used. During the shutdowns in ILW1 (2012), ILW2 (2014) and ILW3 (2016), selected beryllium tiles were removed from the vacuum vessel. In this study, tiles from three positions were analysed, and analysis results were compared regarding both the tile position in the vacuum vessel and differences in the exploitation con…

research product

Overview of the JET results with the ITER-like wall

Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. T…

research product

Behaviour of neutron irradiated beryllium during temperature excursions up to and beyond its melting temperature

Abstract Beryllium pebble behaviour has been studied regarding the accidental operation conditions of tritium breeding blanket of fusion reactors. Structure evolution, oxidation and thermal properties have been compared for nonirradiated and neutron irradiated beryllium pebbles during thermal treatment in a temperature range from ambient temperature to 1600 K. For neutron irradiated pebbles tritium release process was studied. Methods of temperature programmed tritium desorption (TPD) in combination with thermogravimetry (TG) and temperature differential analysis (TDA), scanning electron microscopy (SEM) in combination with Energy Dispersive X-ray analysis (EDX) have been used. It was found…

research product

Overview of the JET results in support to ITER

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

research product

Growth of beryllium oxide nano-structures during thermal treatment of neutron irradiated beryllium

Beryllium oxide nano-structures grown during high temperature oxidation of neutron irradiated beryllium has been investigated. Oxidation of non - irradiated and neutron irradiated beryllium was performed in differential thermal analyzer in an atmosphere of air and its mixture with helium at temperatures up to 1050°C. Structure of beryllium and its oxide was studied by the means of scanning electron microscopy. The growth of beryllium oxide nano-structures – “labyrinth type” layers and nano-rods on the inner surfaces of neutron irradiated beryllium were observed by means of Scanning Electron Microscopy. The size of the rods was 10-100 nm in diameter and up to few micrometers in length. There…

research product

Tritium distribution and chemical forms in the irradiated beryllium pebbles before and after thermoannealing

Abstract Beryllium pebbles are foreseen as a neutron multiplier in the tritium breeding blanket of the future fusion devices. Tritium inventory in the beryllium as a result of neutron-induced transmutations is a significant safety and technological issue for the operation of the breeding blanket. In this study, beryllium pebbles from 3 different irradiation experiments: BERYLLIUM, EXOTIC 8/3-13 and PBA, performed at High Flux Reactor HFR have been investigated. The distribution of tritium in the bulk of the pebbles and the abundance ratios of chemical forms of tritium T 0 , T + and T 2 have been analysed before and after the different thermo-annealing experiments. In order to determine the …

research product

Surface Morphology of Single and Multi-Layer Silicon Nitride Dielectric Nano-Coatings on Silicon Dioxide and Polycrystalline Silicon

Silicon nitride (Si3N4) in a form of single and multi-layer nanofilms is proposed to be used as a dielectric layer in nanocapacitors for operation in harsh environmental conditions. Characterization of surface morphology, roughness and chemical bonds of the Si3N4 coatings has an important role in production process as the surface morphology affects the contact surface with other components of the produced device. Si3N4 was synthesized by using low pressure chemical vapour deposition method and depositing single and multi-layer (3 – 5 layers) nanofilms on SiO2 and polycrystalline silicon (PolySi). The total thickness of the synthesized nanofilms was 20 – 60 nm. Surface morphology was investi…

research product

Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating

International audience; During the 2015--2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate…

research product