0000000000277143

AUTHOR

Sabrina Conoci

0000-0002-5874-7284

showing 11 related works from this author

Poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films for advanced performance transistors

2005

Solution processed Langmuir-Scha ̈fer and cast thin films of regioregular poly(2,5-dioctyloxy-1,4- phenylene-alt-2,5-thienylene) are investigated as transistor active layers. The study of their field-effect properties evidences that no transistor behavior can be seen with a cast film channel material. This was not surprising considering the twisted conformation of the polymer backbone predicted by various theoretical studies. Strikingly, the Langmuir-Scha ̈fer (LS) thin films exhibit a field-effect mobility of 5 × 10-4 cm2/V‚s, the highest attained so far with an alkoxy-substituted conjugated polymer. Extensive optical, morphological, and structural thin-film characterization supports the a…

LangmuirMaterials sciencePHENYLENEGeneral Chemical EngineeringNanotechnologylaw.inventionlawPhenyleneSTILLE COUPLING REACTIONMaterials ChemistryThin filmConductive polymerbusiness.industryREGIOREGULAR POLY(3-HEXYLTHIOPHENE)TransistorGeneral ChemistryOPTICAL-PROPERTIESSolution processedBLODGETT-FILMSCONDUCTING POLYMERSOptoelectronicsField-effect transistorPOLYTHIOPHENESFIELD-EFFECT TRANSISTORSREPEAT UNITSbusinessCONJUGATED POLYMERS
researchProduct

Si photomultipliers for bio-sensing applications

2016

In this paper, silicon photomultipliers (SiPM) are proposed as optical detectors for bio sensing. Optical transduction is the most used detection mechanism in many biosensor applications, such as DNA microarray and real-time polymerase chain reaction. The performances of a 25 pixels device used for both applications are studied. The results confirm that the SiPM is more sensitive than the traditionally employed detectors. In fact, it is able to experimentally detect 1 nM and 100 fM of fluorophore concentrations in dried samples and solutions, respectively. We present and discuss in details the detector configuration and its characterization as fluorescence detector for bio sensing.

Optical biosensor systemPhotomultiplierFluorophoreMaterials sciencePixel010308 nuclear & particles physics010401 analytical chemistryDetectorDNA microarrayDNA microarray Optical biosensor system RT PCR Silicon PhotomultipliersNanotechnologySilicon Photomultipliers01 natural sciencesFluorescenceSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsFluorescence spectroscopy0104 chemical scienceschemistry.chemical_compoundSilicon photomultiplierchemistry0103 physical sciencesElectrical and Electronic EngineeringBiosensorRT PCR
researchProduct

Ethane-Bridged Zinc-Porphyrin Dimers in Langmuir-Shäfer Thin Films: Structural and Spectroscopic Properties

2006

This work reports on the structural and spectroscopic properties of ethane-bridged Zn porphyrin dimers (1) in Langmuir-Scha¨fer (LS) thin films by combining scanning force microscopy (SFM) with film balance, UV-vis absorption, fluorescence, and nanosecond laser flash photolysis measurements. Results show that depending on the surface pressure the Langmuir films of pure 1 can be arranged in two different condensed phases, whereas SFM of the LS films shows characteristic fractal networks constituted by nanoscopic aggregates. The spectral findings agree with a picture in which 1 is apparently present in the anti conformation but aggregated in a sort of H-type structure whose optical features r…

LangmuirPorphyrinsLangmuir-Schaefer filmPhotochemistryporphyrin dimerPorphyrinSurfaces Coatings and Filmscircular dichroismchemistry.chemical_compoundCrystallographychemistryUltrafast laser spectroscopyMaterials ChemistryArachidic acidFlash photolysisPhysical and Theoretical ChemistryAbsorption (chemistry)Thin filmChiralityUV-vis absorptionConformational isomerismfluorescence and nanosecond laser flash photolysis measurements
researchProduct

Nanostructural depth-profile and field-effect properties of poly(alkoxyphenylene-thienylene) Langmuir-Schäfer thin-films

2008

The correlations between morphological features and field-effect properties of poly(alkoxyphenylene-thiophene) thin Langmuir–Schafer film deposited on differently terminated gate dielectric surfaces, namely bare and methyl functionalized thermal silicon dioxide (t-SiO2), have been systematically studied. The film morphology has been investigated at different film thickness by Scanning Force Microscopy. Films thicker than a few layers show comparable morphology on both dielectric surfaces while differences are seen for the ultra-thin polymer deposit in close proximity to the substrate. Such deposit is notably more heterogeneous on bare t-SiO2, while a more compact and uniform nanogranular st…

Materials scienceSiliconSilicon dioxideGate dielectricField effectchemistry.chemical_elementConducting polymersNanotechnologySubstrate (electronics)Dielectricchemistry.chemical_compoundMaterials ChemistryComposite materialThin filmConductive polymerLangmuir-Schäfer organic thin-filmsOrganic–inorganic interfaceConducting polymers; Langmuir-Schäfer organic thin-films; Organic field effect transistors; Organic-inorganic interfaceOrganic-inorganic interfaceConducting polymerLangmuir–Schäfer filmMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialstransistors thin films nanotechnology Langmuir-ShaeferchemistryOrganic field effect transistorsOrganic field effect transistor
researchProduct

Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering

2022

Articular cartilage is characterized by a poor self-healing capacity due to its aneural and avascular nature. Once injured, it undergoes a series of catabolic processes which lead to its progressive degeneration and the onset of a severe chronic disease called osteoarthritis (OA). In OA, important alterations of the morpho-functional organization occur in the cartilage extracellular matrix, involving all the nearby tissues, including the subchondral bone. Osteochondral engineering, based on a perfect combination of cells, biomaterials and biomolecules, is becoming increasingly successful for the regeneration of injured cartilage and underlying subchondral bone tissue. To this end, recently,…

Cartilage ArticularTissue ScaffoldsOrganic ChemistryBiocompatible MaterialsGeneral Medicinetissue regenerationCatalysisComputer Science ApplicationsInorganic Chemistryosteoarthritisphage-based functional peptidesOsteogenesistissue engineeringHumansIntercellular Signaling Peptides and Proteinsbiomimetic peptidesPhysical and Theoretical ChemistryPeptidescartilageMolecular BiologySpectroscopy
researchProduct

Galactosylated Polymer/Gold Nanorods Nanocomposites for Sustained and Pulsed Chemo-Photothermal Treatments of Hepatocarcinoma

2022

In this paper, we propose a rational design of a hybrid nanosystem capable of locally delivering a high amount of hydrophobic anticancer drugs (sorafenib or lenvatinib) and heat (hyperthermia) in a remote-controlled manner. We combined in a unique nanosystem the excellent NIR photothermal conversion of gold nanorods (AuNRs) with the ability of a specially designed galactosylated amphiphilic graft copolymer (PHEA-g-BIB-pButMA-g-PEG-GAL) able to recognize hepatic cells overexpressing the asialoglycoprotein receptor (ASGPR) on their membranes, thus giving rise to a smart composite nanosystem for the NIR-triggered chemo-phototherapy of hepatocarcinoma. In order to allow the internalization of A…

Settore CHIM/09 - Farmaceutico Tecnologico Applicativopolyaspartamidedrug deliveryPharmaceutical Sciencenanoparticlessorafeniblenvatinibpolyaspartamide; gold nanorods; sorafenib; lenvatinib; nanoparticles; drug deliverygold nanorods
researchProduct

Tailored conjugated polymer Langmuir-Schafer thin films in sensing transistors

2004

Organic Thin Film Transistors (OTFTs) have been fabricated, in a standard bottom gate configuration, with Langmuir-Schäfer (LS) or cast thin films of regioregular poly[1,4-(2,5-dioctyloxyphenylene)-2,5-thiophene], synthesized via an organometallic protocol, as active layers. The transistors electrical characterization has evidenced that LS based devices exhibit better performance level than cast film ones. Appealing perspectives for newly substituted conjugated polymers in OTFT sensing devices are discussed.

Conductive polymerchemistry.chemical_classificationLangmuirMaterials sciencebusiness.industryTransistorElectrical engineeringPolymerConjugated systemConjugated polymers Aromatic compounds cyclic voltammetryActive layerlaw.inventionchemistrylawThin-film transistorOptoelectronicsThin filmbusinessSPIE Proceedings
researchProduct

Ultrathin silicon nanowires for optical and electrical nitrogen dioxide detection

2021

The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even wit…

Materials sciencePhotoluminescenceHigh interestGeneral Chemical EngineeringNanotechnology02 engineering and technology01 natural sciencesArticleHuman healthchemistry.chemical_compoundSilicon nanowires0103 physical sciencesGeneral Materials ScienceNitrogen dioxideSilicon nanowiresQD1-999Nitrogen dioxide010302 applied physicsGas sensing; Light-emission; Nitrogen dioxide; Silicon nanowiresLight-emission021001 nanoscience & nanotechnologyIsotropic etchingChemistrychemistryGas sensing Light-emission Nitrogen dioxide Silicon nanowiresLight emission0210 nano-technologyGas sensing
researchProduct

Fluorescent Biosensors Based on Silicon Nanowires

2021

Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability…

light-emissionFabricationMaterials scienceBiosensors Fluorescent sensors Light-emission Silicon nanowiresGeneral Chemical EngineeringData interpretationNanotechnologyReviewSubstrate (electronics)biosensorsSettore ING-INF/01 - ElettronicaFluorescencesilicon nanowiresChemistryNanosensorfluorescent sensorsGeneral Materials ScienceLight emissionSilicon nanowiresQD1-999BiosensorNanomaterials
researchProduct

LANGMUIR-SCHAEFER FILMS OF A NEW CALIX[4]PYRROLE-BASED MACROCYCLE EXHIBITING INDUCED CHIRALITY UPON DIFFERENTIATED BINDING WITH CHIRAL ALCOHOL VAPOURS

2004

LangmuirLangmuir-Schaefer filmAlcoholPhotochemistrymedicine.diseaseCalix[4]pyrolechemistry.chemical_compoundchemistrymedicineLangmuir-Schafer filmchiral alcohol sensorscalixpyrroleChirality (chemistry)VapoursPyrroleSensors and Microsystems
researchProduct

CY5 fluorescence measured with silicon photomultipliers

2014

This paper presents an efficient optical biosensor set up for a low-level light detection, using fluorescent dyes and a novel Si-based detector. Fluorescence emitted by a traditional fluorophore, CY5, widely used as optical label in DNA microarrays, was detected using a 25 pixels Silicon photomultiplier (SiPM), a device formed by avalanche diodes operating in Geiger mode, in parallel connections. We measured the fluorescence current in different deposition (fluorophore concentration; solvent; salt concentration) and operation (angle of analysis, optical laser power, device gain) conditions. The characterization of DNA samples labeled with CY5 is also reported to demonstrate the detector pot…

DNA recognitionMaterials sciencebusiness.industrySiPMtechnology industry and agricultureFluorescenceeye diseasesfluorescence detectorCY5OpticsSilicon photomultiplierOptoelectronicsbusinessCY5; DNA recognition; fluorescence detector; optical transduction; SiPMoptical transduction
researchProduct