0000000000278169

AUTHOR

Luis Paris

showing 28 related works from this author

IRREDUCIBLE COXETER GROUPS

2004

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a dir…

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)0102 computer and information sciencesPoint group01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryFOS: Mathematics0101 mathematicsLongest element of a Coxeter groupMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsMathematics::CombinatoricsCoxeter notationMathematics::Rings and Algebras010102 general mathematicsCoxeter group010201 computation theory & mathematicsCoxeter complexArtin group20F55Indecomposable moduleMathematics - Group TheoryCoxeter elementInternational Journal of Algebra and Computation
researchProduct

Artin groups of spherical type up to isomorphism

2003

AbstractWe prove that two Artin groups of spherical type are isomorphic if and only if their defining Coxeter graphs are the same.

Pure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics::Group Theory0103 physical sciencesArtin L-functionFOS: Mathematics0101 mathematicsMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsGroup isomorphismAlgebra and Number TheoryNon-abelian class field theory010102 general mathematicsCoxeter groupConductorArtin group010307 mathematical physicsArtin reciprocity lawIsomorphismMathematics - Group TheoryJournal of Algebra
researchProduct

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Artin monoids inject in their groups

2001

We prove that the natural homomorphism from an Artin monoid to its associated Artin group is always injective

MonoidPure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics::Group TheoryMathematics::Category Theory0103 physical sciencesArtin L-functionFOS: Mathematics0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsNon-abelian class field theoryMathematics::Rings and Algebras010102 general mathematicsGalois moduleInjective functionArtin groupHomomorphism010307 mathematical physicsMathematics - Group TheoryGroup theory
researchProduct

Vassiliev invariants for braids on surfaces

2000

We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface.

Surface (mathematics)Fundamental groupLow-dimensional topologyGeneral MathematicsBraid groupGroup Theory (math.GR)braidMathematics::Algebraic TopologyCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Category TheoryMathematics::Quantum Algebra20F36 (Primary) 57M2757N05 (Secondary)BraidFOS: MathematicssurfaceMathematicsApplied MathematicsGeometric Topology (math.GT)Mathematics::Geometric TopologyFinite type invariantVassiliev Invariantfinite type invariantIsomorphismMathematics - Group TheoryGroup theory
researchProduct

Roots in the mapping class groups

2006

The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…

Class (set theory)Pure subgroupGeneral MathematicsBoundary (topology)SigmaGeometric Topology (math.GT)Group Theory (math.GR)Surface (topology)Mapping class groupCombinatoricsMathematics - Geometric Topology57M99Genus (mathematics)FOS: MathematicsMathematics - Group TheoryFinite setMathematicsProceedings of the London Mathematical Society
researchProduct

Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups

1999

It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter-type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lowest common multiples exist. A Garside monoid is a Gaussian monoid in which the left and right lowest common multiples satisfy an additional symmetry condition. A Gaussian group is the group of fractions of a Gaussian monoid, and a Garside group is the group of fractions of a Garside monoid. Braid groups and, more genera…

CombinatoricsMonoidMathematics::Group TheoryCoxeter graphGeneral MathematicsArtin L-functionBraid groupArtin groupArtin reciprocity lawWord problem (mathematics)AutomorphismMathematicsProceedings of the London Mathematical Society
researchProduct

Factored arrangements of hyperplanes

1994

CombinatoricsHyperplaneGeneral Mathematics52B30Arrangement of hyperplanesMathematicsKodai Mathematical Journal
researchProduct

A note on the Lawrence-Krammer-Bigelow representation

2002

A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsLinear representation[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)52C3001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]52C35Mathematics - Geometric TopologyMathematics::Group TheoryMathematics::Algebraic Geometry[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics20F36 52C35 52C30 32S22braid groups0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]linear representations010102 general mathematicsRepresentation (systemics)FibrationSalvetti complexesGeometric Topology (math.GT)Mathematics::Geometric TopologyHyperplaneMonodromy010307 mathematical physicsGeometry and TopologyMathematics - Group Theory32S22
researchProduct

Presentations for the punctured mapping class groups in terms of Artin groups

1999

Consider an oriented compact surface F of positive genus, possibly with boundary, and a finite set P of punctures in the interior of F, and define the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms h: F-->F which pointwise fix the boundary of F and such that h(P) = P. In this paper, we calculate presentations for all punctured mapping class groups. More precisely, we show that these groups are isomorphic with quotients of Artin groups by some relations involving fundamental elements of parabolic subgroups.

Pointwise20F38Class (set theory)presentationsGroup (mathematics)20F36Boundary (topology)Geometric Topology (math.GT)mapping class groupsSurface (topology)Mathematics::Geometric TopologyMapping class groupCombinatoricsMathematics - Geometric TopologyArtin groupsGenus (mathematics)FOS: MathematicsIsotopyGeometry and Topology57N0557N05 20F36 20F38MathematicsAlgebraic & Geometric Topology
researchProduct

Centralizers of Parabolic Subgroups of Artin Groups of TypeAl,Bl, andDl

1997

Abstract Let ( A , Σ) be an Artin system of one of the types A l , B l , D l . For X  ⊆ Σ, we denote by A X the subgroup of A generated by X . Such a group is called a parabolic subgroup of ( A , Σ). Let A X be a parabolic subgroup with connected associated Coxeter graph. We exhibit a generating set of the centralizer of A X in A . Moreover, we prove that there exists X ′ ⊆ Σ such that A X ′ is conjugate to A X and such that the centralizer of A X ′ in A is generated by the centers of all the parabolic subgroups containing A X ′ .

CombinatoricsDiscrete mathematicsMathematics::Group TheoryCoxeter graphAlgebra and Number TheoryGroup (mathematics)Generating set of a groupCharacteristic subgroupCentralizer and normalizerConjugateMathematicsJournal of Algebra
researchProduct

The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group

2000

It was conjectured by Tits that the only relations amongst the squares of the standard generators of an Artin group are the obvious ones, namely that a^2 and b^2 commute if ab=ba appears as one of the Artin relations. In this paper we prove Tits' conjecture for all Artin groups. More generally, we show that, given a number m(s)>1 for each Artin generator s, the only relations amongst the powers s^m(s) of the generators are that a^m(a) and b^m(b) commute if ab=ba appears amongst the Artin relations.

CombinatoricsMathematics::Group TheoryConjectureGeneral MathematicsMathematics::Rings and AlgebrasFOS: MathematicsGenerating set of a groupArtin group20F36 (Primary) 57N05 (Secondary)Group Theory (math.GR)Mathematics - Group TheoryMathematics
researchProduct

Construction de représentations irréductibles à partir de complexes de groupes

2000

Resume Nous donnons dans cette Note une methode de construction d'actions a stabilisateurs non commensurables a partir de complexes de groupes. Par un resultat de Burger et de la Harpe, de telles actions fournissent des representations unitaires irreductibles de groupes discrets.

General MedicineHumanitiesMathematicsComptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

Lectures on Artin Groups and the $$K(\pi ,1)$$ Conjecture

2014

This paper consists of the notes of a mini-course (3 lectures) on Artin groups that focuses on a central question of the subject, the \(K(\pi ,1)\) conjecture.

Pure mathematicsConjectureCoxeter groupPiArtin groupSubject (documents)Mathematics
researchProduct

A simple algorithm for finding short sigma-definite representatives

2010

We describe a new algorithm which for each braid returns a quasi-geodesic sigma-definite word representative, defined as a braid word in which the generator sigma_i with maximal index i appears either only positively or only negatively.

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid groupbraid monoids20F3620M0506F05Group Theory (math.GR)02 engineering and technology01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics::Group TheoryMathematics::Category TheoryMathematics::Quantum AlgebraFOS: MathematicsBraidBraid group0101 mathematicsSIMPLE algorithmMathematicsDiscrete mathematicsGenerator (computer programming)algorithmAlgebra and Number Theory010102 general mathematicsSigmaComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)021001 nanoscience & nanotechnologyMathematics::Geometric Topologybraid orderingIndex (publishing)0210 nano-technologyMathematics - Group TheoryWord (computer architecture)Journal of Algebra
researchProduct

Presentations for the Mapping Class Groups of Nonorientable Surfaces

2014

CombinatoricsDehn twistClass (set theory)Mapping class groupMathematics
researchProduct

PreGarside monoids and groups, parabolicity, amalgamation, and FC property

2012

We define the notion of preGarside group slightly lightening the definition of Garside group so that all Artin–Tits groups are preGarside groups. This paper intends to give a first basic study on these groups. Firstly, we introduce the notion of parabolic subgroup, we prove that any preGarside group has a (partial) complemented presentation, and we characterize the parabolic subgroups in terms of these presentations. Afterwards we prove that the amalgamated product of two preGarside groups along a common parabolic subgroup is again a preGarside group. This enables us to define the family of preGarside groups of FC type as the smallest family of preGarside groups that contains the Garside g…

Property (philosophy)[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Group (mathematics)General Mathematics010102 general mathematics20F36Group Theory (math.GR)Type (model theory)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryProduct (mathematics)0103 physical sciencesFOS: Mathematics010307 mathematical physicsWord problem (mathematics)0101 mathematicsAlgebraic numberMathematics - Group TheoryMathematics
researchProduct

Birman's conjecture for singular braids on closed surfaces

2003

Let M be a closed oriented surface of genus g≥1, let Bn(M) be the braid group of M on n strings, and let SBn(M) be the corresponding singular braid monoid. Our purpose in this paper is to prove that the desingularization map η : SBn(M)→ℤ[Bn(M)], introduced in the definition of the Vassiliev invariants (for braids on surfaces), is injective.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]MonoidPure mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric TopologyMathematics::Group Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Mathematics::Category TheoryMathematics::Quantum AlgebraGenus (mathematics)0103 physical sciencesFOS: MathematicsBraid0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Algebra and Number TheoryConjecture010102 general mathematicsGeometric Topology (math.GT)20F36;57M27Braid theorySurface (topology)Mathematics::Geometric TopologyInjective function57M27010307 mathematical physicsMathematics - Group Theory
researchProduct

Virtual Artin groups

2021

Starting from the observation that the standard presentation of a virtual braid group mixes the standard presentation of the corresponding braid group with the standard presentation of the corresponding symmetric group and some mixed relations that mimic the action of the symmetric group on its root system, we define a virtual Artin group $VA[\Gamma]$ of a Coxeter graph $\Gamma$ mixing the standard presentation of the Artin group $A[\Gamma]$ with the standard presentation of the Coxeter group $W[\Gamma]$ and some mixed relations that mimic the action of $W[\Gamma]$ on its root system. By definition we have two epimorphisms $\pi_K:VA[\Gamma]\to W[\Gamma]$ and $\pi_P:VA[\Gamma]\to W[\Gamma]$ …

Mathematics::Group TheoryGeneral MathematicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Mathematics20F36Group Theory (math.GR)[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics - Group Theory
researchProduct

Parabolic Subgroups of Artin Groups

1997

Abstract Let ( A , Σ) be an Artin system. For X  ⊆ Σ, we denote by A X the subgroup of A generated by X . Such a group is called a parabolic subgroup of A . We reprove Van der Lek's theorem: “a parabolic subgroup of an Artin group is an Artin group.” We give an algorithm which decides whether two parabolic subgroups of an Artin group are conjugate. Let A be a finite type Artin group, and let A X be a parabolic subgroup with connected associated Coxeter graph. The quasi-centralizer of A X in A is the set of β in A such that β X β −1  =  X . We prove that the commensurator of A X in A is equal to the normalizer of A X in A , and that this group is generated by A X and the quasi-centralizer of…

CombinatoricsDiscrete mathematicsMathematics::Group TheoryAlgebra and Number TheoryGroup (mathematics)Artin L-functionCommensuratorArtin groupArtin reciprocity lawCharacteristic subgroupCentralizer and normalizerMathematicsConductorJournal of Algebra
researchProduct

Virtual and arrow Temperley–Lieb algebras, Markov traces, and virtual link invariants

2021

Let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and let [Formula: see text] be the algebra of Laurent polynomials in the variable [Formula: see text] and standard polynomials in the variables [Formula: see text] For [Formula: see text] we denote by [Formula: see text] the virtual braid group on [Formula: see text] strands. We define two towers of algebras [Formula: see text] and [Formula: see text] in terms of diagrams. For each [Formula: see text] we determine presentations for both, [Formula: see text] and [Formula: see text]. We determine sequences of homomorphisms [Formula: see text] and [Formula: see text], we determine Markov traces […

Pure mathematicsAlgebra and Number TheoryMarkov chainComputer Science::Information Retrieval010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)0102 computer and information sciences01 natural sciencesTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematicsComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGArrowComputer Science::General Literature0101 mathematicsAlgebra over a fieldVirtual linkComputingMilieux_MISCELLANEOUSMathematicsVariable (mathematics)Journal of Knot Theory and Its Ramifications
researchProduct

Commensurators of parabolic subgroups of Coxeter groups

1996

Let $(W,S)$ be a Coxeter system, and let $X$ be a subset of $S$. The subgroup of $W$ generated by $X$ is denoted by $W_X$ and is called a parabolic subgroup. We give the precise definition of the commensurator of a subgroup in a group. In particular, the commensurator of $W_X$ in $W$ is the subgroup of $w$ in $W$ such that $wW_Xw^{-1}\cap W_X$ has finite index in both $W_X$ and $wW_Xw^{-1}$. The subgroup $W_X$ can be decomposed in the form $W_X = W_{X^0} \cdot W_{X^\infty} \simeq W_{X^0} \times W_{X^\infty}$ where $W_{X^0}$ is finite and all the irreducible components of $W_{X^\infty}$" > are infinite. Let $Y^\infty$ be the set of $t$ in $S$ such that $m_{s,t}=2$" > for all $s\in X^\i…

CombinatoricsMathematics::Group TheoryGroup (mathematics)Applied MathematicsGeneral MathematicsCoxeter groupCommensuratorFOS: MathematicsGroup Theory (math.GR)Mathematics - Group TheoryMathematics
researchProduct

Commensurability in Artin groups of spherical type

2019

Let $A$ and $A'$ be two Artin groups of spherical type, and let $A_1,\dots,A_p$ (resp. $A'_1,\dots,A'_q$) be the irreducible components of $A$ (resp. $A'$). We show that $A$ and $A'$ are commensurable if and only if $p=q$ and, up to permutation of the indices, $A_i$ and $A'_i$ are commensurable for every $i$. We prove that, if two Artin groups of spherical type are commensurable, then they have the same rank. For a fixed $n$, we give a complete classification of the irreducible Artin groups of rank $n$ that are commensurable with the group of type $A_n$. Note that it will remain 6 pairs of groups to compare to get the complete classification of Artin groups of spherical type up to commensur…

Primary 20F36 Secondary 57M07 20B30Group (mathematics)General MathematicsSpherical typeGeometric Topology (math.GT)Group Theory (math.GR)Type (model theory)Rank (differential topology)Commensurability (mathematics)CombinatoricsPermutationMathematics - Geometric TopologyMathematics::Group TheoryFOS: MathematicsMathematics - Group TheoryMathematics
researchProduct

Finite index subgroups of mapping class groups

2011

Let g ≥ 3 and n ≥ 0, and let Mg,n be the mapping class group of a surface of genus g with n boundary components. We prove that Mg,n contains a unique subgroup of index 2g−1(2g − 1) up to conjugation, a unique subgroup of index 2g−1(2g + 1) up to conjugation, and the other proper subgroups ofMg,n are of index greater than 2g−1(2g+1). In particular, the minimum index for a proper subgroup of Mg,n is 2g−1(2g − 1). AMS Subject Classification. Primary: 57M99. Secondary: 20G40, 20E28. 0 Introduction and statement of results The interaction between mapping class groups and finite groups has long been a topic of interest. The famous Hurwitz bound of 1893 showed that the mapping class group of a clo…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower bounds[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric Topologysymbols.namesake57M99SubgroupGenus (mathematics)[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: MathematicsOrder (group theory)0101 mathematicsQuotientMathematicsRiemann surface010102 general mathematicsGeometric Topology (math.GT)Mapping class groupOrientation (vector space)symbols010307 mathematical physicsMathematics - Group Theory
researchProduct

HOMFLY-PT skein module of singular links in the three-sphere

2012

For a ring R, we denote by [Formula: see text] the free R-module spanned by the isotopy classes of singular links in 𝕊3. Given two invertible elements x, t ∈ R, the HOMFLY-PT skein module of singular links in 𝕊3 (relative to the triple (R, t, x)) is the quotient of [Formula: see text] by local relations, called skein relations, that involve t and x. We compute the HOMFLY-PT skein module of singular links for any R such that (t-1 - t + x) and (t-1 - t - x) are invertible. In particular, we deduce the Conway skein module of singular links.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]HOMFFLY-PT skein modulePure mathematics01 natural scienceslaw.inventionMathematics - Geometric TopologylawMathematics::Quantum Algebra[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencessingular knot singular linkFOS: Mathematics0101 mathematicsQuotientMathematicsRing (mathematics)Algebra and Number TheorySkein010102 general mathematicsSkein relationGeometric Topology (math.GT)Mathematics::Geometric TopologyInvertible matrix57M25Isotopy010307 mathematical physics
researchProduct

Intersection subgroups of complex hyperplane arrangements

2000

Abstract Let A be a central arrangement of hyperplanes in C n , let M( A ) be the complement of A , and let L ( A ) be the intersection lattice of A . For X in L ( A ) we set A X ={H∈ A : H⫆X} , and A /X={H/X: H∈ A X } , and A X ={H∩X: H∈ A \ A X } . We exhibit natural embeddings of M( A X ) in M( A ) that give rise to monomorphisms from π 1 (M( A X )) to π 1 (M( A )) . We call the images of these monomorphisms intersection subgroups of type X and prove that they form a conjugacy class of subgroups of π 1 (M( A )) . Recall that X in L ( A ) is modular if X+Y is an element of L ( A ) for all Y in L ( A ) . We call X in L ( A ) supersolvable if there exists a chain 0⫅X 1 ⫅⋯⫅X d =X in L ( A ) …

Discrete mathematicsIntersection subgroupCommensuratorLattice (group)Center (category theory)Type (model theory)Characterization (mathematics)Centralizer and normalizerCombinatoricsConjugacy classModular elementArrangement of hyperplanesGeometry and TopologyMathematicsArrangement of hyperplanesTopology and its Applications
researchProduct

Residual 𝑝 properties of mapping class groups and surface groups

2008

Let M ( Σ , P ) \mathcal {M}(\Sigma , \mathcal {P}) be the mapping class group of a punctured oriented surface ( Σ , P ) (\Sigma ,\mathcal {P}) (where P \mathcal {P} may be empty), and let T p ( Σ , P ) \mathcal {T}_p(\Sigma ,\mathcal {P}) be the kernel of the action of M ( Σ , P ) \mathcal {M} (\Sigma , \mathcal {P}) on H 1 ( Σ ∖ P , F p ) H_1(\Sigma \setminus \mathcal {P}, \mathbb {F}_p) . We prove that T p ( Σ , P ) \mathcal {T}_p( \Sigma ,\mathcal {P}) is residually p p . In particular, this shows that M ( Σ , P ) \mathcal {M} (\Sigma ,\mathcal {P}) is virtually residually p p . For a group G G we denote by I p ( G ) \mathcal {I}_p(G) the kernel of the natural action of Out ⁡ ( G ) \ope…

CombinatoricsKernel (algebra)Class (set theory)Conjugacy classGroup (mathematics)Applied MathematicsGeneral MathematicsOrder (group theory)Property aGeometrySurface (topology)Mapping class groupMathematicsTransactions of the American Mathematical Society
researchProduct

From braid groups to mapping class groups

2005

This paper is a survey of some properties of the braid groups and related groups that lead to questions on mapping class groups.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]20F3620F36; 57M99Geometric Topology (math.GT)Group Theory (math.GR)[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics - Geometric Topology57M99[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsMathematics - Group Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Proceedings of Symposia in Pure Mathematics
researchProduct