0000000000285255

AUTHOR

Raweewan Thiramanas

0000-0002-6881-6247

<p>Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells</p>

Introduction Adoptive T-cell immunotherapy emerged as a powerful and promising cancer therapy, as the problem regarding the immuno-reaction between different donors and recipients can be avoided. However, this approach is challenging. After long cultivation and expansion under laboratory media conditions, T-cells are losing their viability and function due to immune checkpoint proteins, leading to decreased efficiency in killing cancer cells. Therefore, a new strategy to improve T-cell survival and function is needed. With the advantages of nanotechnology and the biocompatibility of silica-based material, silica nanocapsules (SiNCs) provide an ideal delivery system to transport therapeutic …

research product

Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules

Monitoring local temperature inside cells is crucial when interpreting biological activities as enhanced cellular metabolism leads to higher heat production and is commonly correlated with the presence of diseases such as cancer. In this study, we report on polymeric upconversion nanocapsules for potential use as local nanothermometers in cells by exploiting the temperature dependence of the triplet-triplet annihilation upconversion phenomenon. Nanocapsules synthesized by the miniemulsion solvent evaporation technique are composed of a polymer shell and a liquid core of rice bran oil, hosting triplet-triplet annihilation upconversion active dyes as sensitizer and emitter molecules. The sens…

research product

Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Near-Infrared Light-Regulated Enzyme Activity.

Enzyme activity is important for metabolism, cell functions, and treating diseases. However, remote control of enzyme activity in deep tissue remains a challenge. This study demonstrates near-infrared (NIR) light-regulated enzyme activity in living cells based on upconverting nanoparticles (UCNPs) and a photoactivatable Ru complex. The Ru complex is a caged enzyme inhibitor that can be activated by blue light. To prepare a nanocarrier for NIR photoinhibition of enzyme activity, a UCNP and the caged enzyme inhibitors are encapsulated in a hollow mesoporous silica nanoparticle. In such a nanocarrier, the UCNP can harvest NIR light and convert it into blue light, which can activate the caged e…

research product

Photoactivation of Anticancer Ru Complexes in Deep Tissue: How Deep Can We Go?

Activation of anticancer therapeutics such as ruthenium (Ru) complexes is currently a topic of intense investigation. The success of phototherapy relies on photoactivation of therapeutics after the light passes through skin and tissue. In this paper, the photoactivation of anticancer Ru complexes with 671-nm red light through tissue of different thicknesses was studied. Four photoactivatable Ru complexes with different absorption wavelengths were synthesized. Two of them (Ru3 and Ru4) were responsive to wavelengths in the “therapeutic window” (650–900 nm) and could be activated using 671-nm red light after passing through tissue up to 16-mm-thick. The other two (Ru1 and Ru2) could not be ac…

research product

Versatile preparation of silica nanocapsules for biomedical applications

Core–shell nanocapsules are receiving increasing interest for drug delivery applications. Silica nanocapsules have been the focus of intensive studies due to their biocompatibility, versatile silica chemistry, and tunable porosity. However, a versatile one-step preparation of silica nanocapsules with well-defined core–shell structure, tunable size, flexible interior loading, and tailored shell composition, permeability, and surface functionalization for site-specific drug release and therapeutic tracking remains a challenge. Herein, an interfacially confined sol–gel process in miniemulsion for the one-step versatile preparation of functional silica nanocapsules is developed. Uniform nanocap…

research product

Cellular Uptake of siRNA-Loaded Nanocarriers to Knockdown PD-L1: Strategies to Improve T-cell Functions

T-cells are a type of lymphocyte (a subtype of white blood cells) that play a central role in cell-mediated immunity. Currently, adoptive T-cell immunotherapy is being developed to destroy cancer cells. In this therapy, T-cells are harvested from a patient&rsquo

research product

Red-Light-Controlled Release of Drug-Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments

Traditional photodynamic phototherapy is not efficient for anticancer treatment because solid tumors have a hypoxic microenvironment. The development of photoactivated chemotherapy based on photoresponsive polymers that can be activated by light in the “therapeutic window” would enable new approaches for basic research and allow for anticancer phototherapy in hypoxic conditions. This work synthesizes a novel Ru‐containing block copolymer for photoactivated chemotherapy in hypoxic tumor environment. The polymer has a hydrophilic poly(ethylene glycol) block and a hydrophobic Ru‐containing block, which contains red‐light‐cleavable (650–680 nm) drug–Ru complex conjugates. The block copolymer se…

research product