Gold nanoparticles/electrochemically expanded graphite composite: A bifunctional platform toward glucose sensing and SERS applications
Abstract An integrated nanogold/expanded graphite based sensor was fabricated by a former electrochemical etching of the pencil lead electrode (PLE) and a later in-situ deposition of gold nanoparticles (AuNPs). The electrochemical pretreatment of PLE (EPLE) created a 3D graphene-like surface, enhanced the electrode surface area and facilitated the electron transfer ability within 5 min without any hazardous chemicals added. The obtained AuNPs/EPLE sensor had an excellent electrochemical response to glucose with a wide linear concentration range, from 0.05 to 38 mM and 38 to 60 mM, and a low detection limit of 5 μM (S/N = 3). Furthermore, the AuNPs/EPLE sensor was successfully employed to de…
Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations
Guar gum (GG) and Guar gum/borax (GGb) hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR) and model drug release tests. These three approaches are used to estimate the mesh size (ζ) of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug…
Insights into catanionic vesicles thermal transition by NMR spectroscopy
Oppositely charged ionic surfactants can self-assemble into hollow structures, called catanionic vesicles, where the anionic-cationic surfactant pair assumes a double-tailed zwitterionic attitude. In the present work, multilamellar- to-unilamellar thermal transition of a mixed aqueous system of sodium dodecyl sulphate (SDS) and cetyl trimethyl ammonium bromide (CTAB), with a slight excess of the anionic one, has been investigated by 1H, 2H, 14N NMR spectra and 23Na transverse relaxation measurements. It has been inferred that an increase of the temperature enhances the SDS counterion dissociation, which can be considered as one of the driving forces of the mentioned transition. Moreover, in…
Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria
A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea, leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea and urea during the one-pot synthesis enhances the luminescence of the generated C-dots. Moreover, the prepared C-dots have a high distribution of functional groups on their surface. In this work, C-dots proved …
Soft Nanoonions: A Dynamic Overview onto Catanionic Vesicles Temperature-Driven Transition.
Catanionic vesicles are emerging interesting structures for bioapplications. They self-generate by a pairing of oppositely charged ionic surfactants that assemble into hollow structures. Specifically, the anionic-cationic surfactant pair assumes a double-tailed zwitterionic behavior. In this work, the multilamellar-to-unilamellar thermal transition of several mixed aqueous systems, with a slight excess of the anionic one, were investigated. Interestingly, it was found that the anionic counterion underwent a dissociation as a consequence of a temperature increase, leading to the mentioned thermal transition. The present work proposed the spectroscopic techniques, specifically multinuclear NM…
Nitrogen and sulfur co-doped carbon nanodots toward bovine hemoglobin: A fluorescence quenching mechanism investigation
A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co-doped carbon dots (N,S-CDs) with a quantum yield of 16% were synthesized by a 1-step hydrothermal method. The N,S-CDs exhibited a good dispersion, with a graphite-like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S-CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern-Volmer equation, temperature-dependent…
Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot
Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehens…
Modulation of Efficient Diiodo-BODIPY in vitro Phototoxicity to Cancer Cells by Carbon Nano-Onions
Photodynamic therapy (PDT) is currently one of the most promising approaches for targeted cancer treatment. It is based on responses of vital physiological signals, namely reactive oxygen species (ROS), which are associated with diseased condition development, such as tumors. This study presents the synthesis, incorporation, and application of a diiodo-BODIPY based photosensitizer, based on a non-covalent functionalization of carbon nano-onions (CNOs). In vitro assays demonstrate that HeLa cells internalize the diiodo-BODIPY molecules, and their CNOs nanohybrids. Upon cell internalization and light exposure, the pyrene-diiodo-BODIPY molecules induce an increase of the ROS level of HeLa cell…
Synthetic/ECM-inspired hybrid platform for hollow microcarriers with ROS-triggered nanoporation hallmarks
Reactive oxygen species (ROS) are key pathological signals expressed in inflammatory diseases such as cancer, ischemic conditions and atherosclerosis. An ideal drug delivery system should not only be responsive to these signals but also should not elicit an unfavourable host response. This study presents an innovative platform for drug delivery where a natural/synthetic composite system composed of collagen type I and a synthesized polythioether, ensures a dual stimuli-responsive behaviour. Collagen type I is an extracellular matrix constituent protein, responsive to matrix metalloproteinases (MMP) cleavage per se. Polythioethers are stable synthetic polymers characterized by the presence o…
Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages
Viscosupplementation is a therapeutic approach for osteoarthritis treatment, where the synovial fluid, the natural lubricant of the joints, is replaced by viscoelastic solutions with rheological properties comparable or better than the starting material. This study presents the development of an innovative platform for viscosupplementation, based on the optimization of polysaccharide-based colloidal hydrogel, aiming to reduce on-site enzyme degradation and enhance the possibility of hyaluronic acid substitution with alternative biomaterials. Catanionic vesicles are proposed as physical crosslinker that can guarantee the formation of a 'soft', tunable network, offering a dual-therapeutic app…
Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery
Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the othe…
Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot.
The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins fo…
Effect of chest physiotherapy on cystic fibrosis sputum nanostructure: an experimental and theoretical approach.
AbstractCystic fibrosis (CF) is a disease characterized by the production of viscous mucoid secretions in multiple organs, particularly the airways. The pathological increase of proteins, mucin and biological polymers determines their arrangement into a three-dimensional polymeric network, affecting the whole mucus and impairing the muco-ciliary clearance which promotes inflammation and bacterial infection. Thus, to improve the efficacy of the drugs usually applied in CF therapy (e.g., mucolytics, anti-inflammatory and antibiotics), an in-depth understanding of the mucus nanostructure is of utmost importance. Drug diffusivity inside a gel-like system depends on the ratio between the diffusi…
Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation
Background: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interf…
Antibacterial drug release from a biphasic gel system: Mathematical modelling
Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (…