0000000000292537

AUTHOR

S. Martínez-sanchis

A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

[EN] This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely…

research product

Patient-specific simulation of the intrastromal ring segment implantation in corneas with keratoconus

Purpose The purpose of this study was the simulation of the implantation of intrastromal corneal-ring segments for patients with keratoconus. The aim of the study was the prediction of the corneal curvature recovery after this intervention. Methods Seven patients with keratoconus diagnosed and treated by implantation of intrastromal corneal-ring segments were enrolled in the study. The 3D geometry of the cornea of each patient was obtained from its specific topography and a hyperelastic model was assumed to characterize its mechanical behavior. To simulate the intervention, the intrastromal corneal-ring segments were modeled and placed at the same location at which they were placed in the s…

research product

Modeling the Mechanical Behavior of the Breast Tissues Under Compression in Real Time

This work presents a data-driven model to simulate the mechanical behavior of the breast tissues in real time. The aim of this model is to speed up some multimodal registration algorithms, as well as some image-guided interventions. Ten virtual breast phantoms were used in this work. Their deformation during a mammography was performed off-line using the finite element method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict the deformation of the breast tissues. The models were a decision tree and two ensemble methods (extremely randomized trees and random forest). Four experiments were designed to assess the performance of th…

research product

Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations

[EN] The development of accurate real-time models of the biomechanical behavior of different organs and tissues still poses a challenge in the field of biomechanical engineering. In the case of the liver, specifically, such a model would constitute a great leap forward in the implementation of complex applications such as surgical simulators, computed-assisted surgery or guided tumor irradiation. In this work, a relatively novel approach for developing such a model is presented. It consists in the use of a machine learning algorithm, which provides real-time inference, trained on tens of thousands of simulations of the biomechanical behavior of the liver carried out by the finite element me…

research product

A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs in real time comes from the use of machine learning (ML) techniq…

research product

Machine Learning for Modeling the Biomechanical Behavior of Human Soft Tissue

An accurate modeling of the biomechanical properties of human soft tissue is crucial in many clinical applications, such as, radiotherapy administration or surgery. The finite element method (FEM) is the usual choice to carry out such modeling due to its high accuracy. However, FEM is computationally very costly, and hence, its application in real-time or even off-line with short delays are still challenges to overcome. This paper proposes a framework based on Machine Learning to learn FEM modeling, thus having a tool able to yield results that may be sufficiently fast for clinical applications. In particular, the use of ensembles of Decision Trees has shown its suitability in modeling the …

research product