0000000000297340

AUTHOR

Gennady Enichek

Interface of Silicon Nitride Nanolayers with Oxygen Deficiency

Multilayer Si 3 N 4 consisting of Si 3 N 4 nanolayers with the total thickness 60 nm was deposited layer-by-layer in a low-pressure chemical vapor deposition process. Compared with the single-layer Si 3 N 4 , the multilayer Si 3 N 4 had one-third less oxygen concentration at the interfaces. This decreased density of electrically active centers of oxygen traps and improved quality of nanocapacitors with multilayer Si 3 N 4 dielectric.

research product

Radiation resistance of nanolayered silicon nitride capacitors

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

research product

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

research product

Surface Morphology of Single and Multi-Layer Silicon Nitride Dielectric Nano-Coatings on Silicon Dioxide and Polycrystalline Silicon

Silicon nitride (Si3N4) in a form of single and multi-layer nanofilms is proposed to be used as a dielectric layer in nanocapacitors for operation in harsh environmental conditions. Characterization of surface morphology, roughness and chemical bonds of the Si3N4 coatings has an important role in production process as the surface morphology affects the contact surface with other components of the produced device. Si3N4 was synthesized by using low pressure chemical vapour deposition method and depositing single and multi-layer (3 – 5 layers) nanofilms on SiO2 and polycrystalline silicon (PolySi). The total thickness of the synthesized nanofilms was 20 – 60 nm. Surface morphology was investi…

research product