0000000000298866
AUTHOR
Timothy C. Beers
The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition
(Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary…
The Hamburg/ESO R-process Enhanced Star survey (HERES)
We report on a dedicated effort to identify and study metal-poor stars strongly enhanced in r-process elements ([r/Fe] > 1 dex; hereafter r-II stars), the Hamburg/ESO R-process Enhanced Star survey (HERES). Moderate-resolution (~2A) follow-up spectroscopy has been obtained for metal-poor giant candidates selected from the Hamburg/ESO objective-prism survey (HES) as well as the HK survey to identify sharp-lined stars with [Fe/H] < -2.5dex. For several hundred confirmed metal-poor giants brighter than B~16.5mag (most of them from the HES), ``snapshot'' spectra (R~20,000; S/N~30 per pixel) are being obtained with VLT/UVES, with the main aim of finding the 2-3% r-II stars expected to be a…
The Second APOKASC Catalog: The Empirical Approach
We present a catalog of stellar properties for a large sample of 6676 evolved stars with APOGEE spectroscopic parameters and \textit{Kepler} asteroseismic data analyzed using five independent techniques. Our data includes evolutionary state, surface gravity, mean density, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them. We employ a new empirical approach for combining asteroseismic measurements from different methods, calibrating the inferred stellar parameters, and estimating uncertainties. With high statistical significance, we find that asteroseismic parameters inferred from the different pipelines have systematic offsets that are not removed b…
r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos
This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…
The Extremely Metal‐poor, Neutron Capture–rich Star CS 22892‐052: A Comprehensive Abundance Analysis
High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron-capture elements. A revised model stellar atmosphere has been derived with the aid of a large number of Fe-peak transitions, including both neutral and ionized species of six elements.Several elements, including Mo, Lu, Au, Pt and Pb, have been detected for the first time in CS 22892-052, and significant upper limits have been placed on the abundances of Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper limits have b…
SDSS-III: Massive Spectroscopic Surveys of the Distant Universe, the Milky Way Galaxy, and Extra-Solar Planetary Systems
Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the…
The Hamburg/ESO R-process Enhanced Star survey (HERES): Project Overview, and New r-II Stars
FRIB and the GW170817 Kilonova
In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.
The Hamburg/ESO R-process Enhanced Star survey (HERES):XI. The highly r-process-enhanced star CS 29497-004
We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with Teff = 5013K and [Fe/H]=-2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise, high-resolution (R~75000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled Solar System second peak r-process-element abundance patter…
r‐Process Abundances and Chronometers in Metal‐poor Stars
Rapid neutron-capture (i.e., r-process) nucleosynthesis calculations, employing internally consistent and physically realistic nuclear physics input (QRPA beta-decay rates and the ETFSI-Q nuclear mass model), have been made. These calculations are compared with ground-based and HST observations of neutron-capture elements in the metal poor halo stars CS 22892--052, HD 115444, HD 122563 and HD 126238. The elemental abundances in all four metal-poor stars are consistent with the solar r-process elemental distribution for the elements Z >/= 56. These results strongly suggest, at least for those elements, that the relative elemental r-process abundances have not changed over the history of t…
FRIB and the GW170817 Kilonova
In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.