0000000000319870
AUTHOR
Christopher J. Ackerson
A unified view of ligand-protected gold clusters as superatom complexes
Synthesis, characterization, and functionalization of self-assembled, ligand-stabilized gold nanoparticles are long-standing issues in the chemistry of nanomaterials. Factors driving the thermodynamic stability of well documented discrete sizes are largely unknown. Herein, we provide a unified view of principles that underlie the stability of particles protected by thiolate (SR) or phosphine and halide (PR 3 , X) ligands. The picture has emerged from analysis of large-scale density functional theory calculations of structurally characterized compounds, namely Au 102 (SR) 44 , Au 39 (PR 3 ) 14 X 6 − , Au 11 (PR 3 ) 7 X 3 , and Au 13 (PR 3 ) 10 X 2 3+ , where X is either a halogen or a thiol…
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional t…
Jahn–Teller effects in Au25(SR)18
The relationship between oxidation state, structure, and magnetism in many molecules is well described by first-order Jahn–Teller distortions. This relationship is not yet well defined for ligated nanoclusters and nanoparticles, especially the nano-technologically relevant gold-thiolate protected metal clusters. Here we interrogate the relationships between structure, magnetism, and oxidation state for the three stable oxidation states, −1, 0 and +1 of the thiolate protected nanocluster Au25(SR)18. We present the single crystal X-ray structures of the previously undetermined charge state Au25(SR)18+1, as well as a higher quality single crystal structure of the neutral compound Au25(SR)180. …
Structural and Theoretical Basis for Ligand Exchange on Thiolate Monolayer Protected Gold Nanoclusters
Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reacti…
Dynamic Diglyme-Mediated Self-Assembly of Gold Nanoclusters
We report the assembly of gold nanoclusters by the nonthiolate ligand diglyme into discrete and dynamic assemblies. To understand this surprising phenomenon, the assembly of Au20(SC2H4Ph)15-diglyme into Au20(SC2H4Ph)15-diglyme-Au20(SC2H4Ph)15 is explored in detail. The assembly is examined by high-angle annular dark field scanning transmission electron microscopy, size exclusion chromatography, mass spectrometry, IR spectroscopy, and calorimetry. We establish a dissociation constant for dimer to monomer conversion of 20.4 μM. Theoretical models validated by transient absorption spectroscopy predict a low-spin monomer and a high-spin dimer, with assembly enabled through weak diglyme oxygen-g…
Jahn–Teller effects in Au25(SR)18
The relationship between oxidation state, structure, and magnetism in many molecules is well described by first-order Jahn–Teller distortions. This relationship is not yet well defined for ligated nanoclusters and nanoparticles, especially the nano-technologically relevant gold-thiolate protected metal clusters. Here we interrogate the relationships between structure, magnetism, and oxidation state for the three stable oxidation states, 1, 0 and +1 of the thiolate protected nanocluster Au25(SR)18. We present the single crystal X-ray structures of the previously undetermined charge state Au25(SR)18+1, as well as a higher quality single crystal structure of the neutral compound Au25(SR)180 . …
CCDC 1055143: Experimental Crystal Structure Determination
Related Article: Marcus A. Tofanelli, Kirsi Salorinne, Thomas W. Ni, Sami Malola, Brian Newell, Billy Phillips, Hannu Häkkinen, Christopher J. Ackerson|2016|Chemical Science|7|1882|doi:10.1039/C5SC02134K
CCDC 1055144: Experimental Crystal Structure Determination
Related Article: Marcus A. Tofanelli, Kirsi Salorinne, Thomas W. Ni, Sami Malola, Brian Newell, Billy Phillips, Hannu Häkkinen, Christopher J. Ackerson|2016|Chemical Science|7|1882|doi:10.1039/C5SC02134K