0000000000331604
AUTHOR
Chiara Modica
HGF/MET Axis Induces Tumor Secretion of Tenascin-C and Promotes Stromal Rewiring in Pancreatic Cancer
Simple Summary It has been previously shown that activation of the MET receptor by its ligand, the hepatocyte growth factor (HGF), modulates the tumor-stroma cross-talk in models of pancreatic cancer. We now wish to cast light on the molecular mechanisms by which this ligand/receptor pair sustains the interaction between cancer cells and the tumor microenviroment. To this end, we compared data obtained by large-scale analysis of gene expression in pancreatic cancer cells grown in the presence of HGF versus cells grown in the presence of HGF and treated with specific inhibitors of HGF/MET signaling. By clustering differentially expressed genes according to functional groups, we identified ca…
Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy
MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and …
Novel Lymphocyte-Independent Antitumor Activity by PD-1 Blocking Antibody against PD-1+ Chemoresistant Lung Cancer Cells
Abstract Purpose: Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non–small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. Experimental Design: PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in…
Additional file 7 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 7: Supplementary Fig. 7. Serum concentration of AbDec-L1 after single i.v. administration to Sprague Dawley rats at different time points.
Additional file 3 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 3: Supplementary Fig. 3. IVIS images of lungs excised from hHGF-ki mice that received intra-pancreatic injection of HPAF-II cells.
Additional file 2 of hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of ‘MET-addicted’ cancers
Additional file 2.
Additional file 3 of Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy
Additional file 3: Supplement Table 1. MET gene amplification in different cell lines and primary cells derived from human tumors of different origin.
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Targeting Phosphatases and Kinases: How to Checkmate Cancer
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, altera…
Cancer cell targeting by CAR-T cells: A matter of stemness
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient’s immune system boosting. Within the tumor mass a subpopulation of cancer cells, known…
Additional file 6 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 6: Supplementary Fig. 6. Analysis of CL-901 primary tumors treated with AbDec-L1.
Additional file 2 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 2: Supplementary Fig. 2. IVIS images of livers excised from hHGF-ki mice that received intra-pancreatic injection of Capan-1 cells.
MET/HGF Co-Targeting in Pancreatic Cancer: A Tool to Provide Insight into the Tumor/Stroma Crosstalk
The ‘onco-receptor’ MET (Hepatocyte Growth Factor Receptor) is involved in the activation of the invasive growth program that is essential during embryonic development and critical for wound healing and organ regeneration during adult life. When aberrantly activated, MET and its stroma-secreted ligand HGF (Hepatocyte Growth Factor) concur to tumor onset, progression, and metastasis in solid tumors, thus representing a relevant target for cancer precision medicine. In the vast majority of tumors, wild-type MET behaves as a ‘stress-response’ gene, and relies on ligand stimulation to sustain cancer cell ‘scattering’, invasion, and protection form apoptosis. …
Additional file 1 of hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of ‘MET-addicted’ cancers
Additional file 1.
Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells
Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased ex…
Recapitulating thyroid cancer histotypes through engineering embryonic stem cells
AbstractThyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248…
Additional file 3 of hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of ‘MET-addicted’ cancers
Additional file 3.
Additional file 5 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 5: Supplementary Fig. 5. IVIS images of organs excised from hHGF-ki mice that received sub-cuteaneous injection of CL-901 cells.
Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody
The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable…
Additional file 4 of Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy
Additional file 4: Supplementary Figure 1. Design and binding properties of DO24 single chain antibody fragments. Supplementary Figure 2. Analysis by flow cytometry of cell surface MET expression. Supplementary Figure 3. Quantitative flow cytometer analysis of surface MET levels in A549 wild type, genetically modified, and not transformed human cells. Supplementary Figure 4. Analysis by flow cytometry of cell surface MET expression in carcinoma cells featuring MET overexpression due to high MET gene copy number. Supplementary Figure 5. Analysis of perforin and granzyme B concentrations in the culture supernatants of T cells co-cultured with target cells expressing different surface MET leve…
Molecular Engineering Strategies Tailoring the Apoptotic Response to a MET Therapeutic Antibody
The MET oncogene encodes a tyrosine kinase receptor involved in the control of a complex network of biological responses that include protection from apoptosis and stimulation of cell growth during embryogenesis, tissue regeneration, and cancer progression. We previously developed an antagonist antibody (DN30) inducing the physical removal of the receptor from the cell surface and resulting in suppression of the biological responses to MET. In its bivalent form, the antibody displayed a residual agonist activity, due to dimerization of the lingering receptors, and partial activation of the downstream signaling cascade. The balance between the two opposing activities is variable in different…
Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy
Abstract Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeri…
Additional file 4 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 4: Supplementary Fig. 4. Immunohistochemical analysis of MET phosphorylation in pancreatic primary tumors treated with AbDec-L1.
Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy
In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxici…
Met inhibition revokes IFNγ-induction of PD-1 ligands in MET-amplified tumours
BACKGROUND: Interferon-induced expression of programmed cell death ligands (PD-L1/PD-L2) may sustain tumour immuneevasion. Patients featuring MET amplification, a genetic lesion driving transformation, may benefit from anti-MET treatment. We explored if MET-targeted therapy interferes with Interferon-gamma modulation of PD-L1/PD-L2 in MET-amplified tumours.METHODS: PD-L1/PD-L2 expression and signalling pathways downstream of MET or Interferon-gamma were analysed in MET-amplified tumour cell lines and in patient-derived tumour organoids, in basal condition, upon Interferon-gamma stimulation, and after anti-MET therapy.RESULTS: PD-L1 and PD-L2 were upregulated in MET-amplified tumour cells up…
Additional file 1 of A receptor-antibody hybrid hampering MET-driven metastatic spread
Additional file 1: Supplementary Fig. 1. IVIS analysis of primary tumors excised from mice that received intra-pancreatic injections of Capan-1 or HPAF-II pancreatic cancer cells.
A receptor-antibody hybrid hampering MET-driven metastatic spread
AbstractBackgroundThe receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (METaddiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (METexpedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition.MethodsIn this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a sin…
hOA-DN30: a highly effective humanized single-arm MET antibody inducing remission of ‘MET-addicted’ cancers
Abstract Background The tyrosine kinase receptor encoded by the MET oncogene is a major player in cancer. When MET is responsible for the onset and progression of the transformed phenotype (MET-addicted cancers), an efficient block of its oncogenic activation results in potent tumor growth inhibition. Methods Here we describe a molecular engineered MET antibody (hOA-DN30) and validate its pharmacological activity in MET-addicted cancer models in vitro and in vivo. Pharmacokinetics and safety profile in non-human primates have also been assessed. Results hOA-DN30 efficiently impaired MET activation and the intracellular signalling cascade by dose and time dependent removal of the receptor fr…