0000000000337251
AUTHOR
O. Nähle
Read-out electronics for fast photon detection with COMPASS RICH-1
A new read-out electronics system has been developed for the fast photon detection of the central region of the COMPASS RICH-1. The project is based on multi-anode photomultipliers read out by the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1 TDC chip characterised by high time resolution. The system has been designed taking into account the high photon flux in the central region of the detector and the high rate requirement of the COMPASS experiment. The system is described in detail together with the measured performances. The new electronics system has been installed and used for the 2006 data taking; it entirely fulfils the expected performances.
The fast photon detection system of COMPASS RICH-1
Abstract A fast photon detection system has been built for the upgrade of COMPASS RICH-1, the large size gaseous RICH detector in use at the COMPASS Experiment at the CERN SPS since 2001. The photon detectors of the central region have been replaced by a new system based on multi-anode photomultipliers coupled to individual fused silica lens telescopes and a fast readout electronics system, while in the outer region the existing MWPCs with CsI photocathodes have been equipped with a new readout system, based on the APV chip. RICH-1 has been successfully operated in its upgraded version during the 2006 run. We report on the upgrade design and construction, and on the preliminary characteriza…
Pattern recognition and PID for COMPASS RICH-1
A package for pattern recognition and PID by COMPASS RICH-1 has been developed and used for the analysis of COMPASS data collected in the years 2002 to 2004, and 2006-2007 with the upgraded RICH-1 photon detectors. It has allowed the full characterization of the detector in the starting version and in the upgraded one, as well as the PID for physics results. We report about the package structure and algorithms, and the detector characterization and PID results.
Design and status of COMPASS FAST-RICH
In the context of the upgrade of COMPASS RICH-1, we are developing a fast photodetection system for RICH counters, based on UV extended Multi-Anode PhotoMultiplier Tubes (MAPMT) and a custom, low dead-time electronic readout system. Photons are concentrated on the MAPMT photocathode by an optical system that preserves the position information. The ratio between the collection and the photosensitive surfaces is ∼7.5 in our design, larger than in previous applications. A new front-end electronics, based on a modified version of the MAD4 discriminator chip, is being realized to digitize the MAPMT signals. We report about the design of the photodetection system and of the associated electronic …
Particle identification with COMPASS RICH-1
International audience; RICH-1 is a large size RICH detector in operation at the COMPASS experiment since 2001 and recently upgraded implementing a new photon detection system with increased performance.A dedicated software package has been developed to perform RICH-1 data reduction, pattern recognition and particle identification as well as a number of accessory tasks for detector studies.The software package, the algorithms implemented and the detector characterisation and performance are reported in detail.
The fast readout system for the MAPMTs of COMPASS RICH-1
A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultiplie…
Spin asymmetry A1d and the spin-dependent structure function g1d of the deuteron at low values of x and Q2
Abstract We present a precise measurement of the deuteron longitudinal spin asymmetry A 1 d and of the deuteron spin-dependent structure function g 1 d at Q 2 1 ( GeV / c ) 2 and 4 × 10 −5 x 2.5 × 10 −2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A 1 d and g 1 d are found to be consistent with zero in the whole range of x.
Particle identification with the fast COMPASS RICH-1 detector
International audience; A new photon detection system for the COMPASS RICH-1 detector has been designed and installed. In the central region, the project is based on multi-anode photo-multiplier technology accompanied by charge sensitive, high resolution and dead-time free time digitization. In the outer area, only the readout electronics for the existing photon detectors has been replaced. Details on the detector upgrade and its performance are presented.
The experience of building and operating COMPASS RICH-1
COMPASS RICH-1 is a large size gaseous Imaging Cherenkov Detector providing hadron identification in the range from 3 to 55 GeV/c, in the wide acceptance spectrometer of the COMPASS Experiment at CERN SPS. It uses a 3 m long C(4)F(10) radiator, a 21 m(2) large VUV mirror surface and two kinds of photon detectors: MAPMTs and MWPCs with CsI photocathodes, covering a total of 5.5 m(2). It is in operation since 2002 and its performance has increased in time thanks to progressive optimization and mostly to a major upgrade which was implemented in 2006. The main characteristics of COMPASS RICH-1 components are described and some specific aspects related to the radiator gas system, the mirror alig…
The COMPASS RICH-1 fast photon detection system
Abstract A fast photon detection system has been built as a part of the upgrade of the COMPASS RICH-1 detector: it is based on 576 multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes and fast readout electronics. This system has replaced the MWPCs with CsI photo-cathodes in the central region ( 1.3 m 2 , 25% of the total area) of the COMPASS RICH-1 photon detectors and has successfully been operated during the data taking in 2006 and 2007. We report about the fast photon detection system design, construction and commissioning, in particular about the design optimization and the validation tests of the lens telescopes. Preliminary values for the incr…
The Polarised Valence Quark Distribution from semi-inclusive DIS
The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 < x < 0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured …
Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS
The measurements of the Collins and Sivers asymmetries of identified hadrons produced in deep-inelastic scattering of 160 GeV/c muons on a transversely polarised 6LiD target at COMPASS are presented. The results for charged pions and charged and neutral kaons correspond to all data available, which were collected from 2002 to 2004. For all final state particles both the Collins and Sivers asymmetries turn out to be small, compatible with zero within the statistical errors, in line with the previously published results for not identified charged hadrons, and with the expected cancellation between the u- and d-quark contributions.
The characterisation of the multianode photomultiplier tubes for the RICH-1 upgrade project at COMPASS
Abstract A major upgrade of the Cherenkov photon detection system of COMPASS RICH-1 has been performed and it has been in operation since the 2006 physics run. The inner part of the photon detector has been replaced by a different technology in order to measure Cherenkov photons at high photoelectron rates, up to several times 10 6 per second and per channel. Cherenkov photons from 200 to 750 nm are detected by 576 multianode photomultiplier tubes (MAPMTs) with 16 channels each, coupled to individual fused silica lens telescopes and fast, high sensitivity and high time resolution electronics read-out. To guarantee an optimal performance of the complete system, parameters like dark current, …
Design and construction of the fast photon detection system for COMPASS RICH-1
International audience; New photon detectors, based on the use of multi-anode photo-multiplier tubes coupled to individual lens telescopes and read out with a dedicated read-out electronics system, equip the central region of the Cherenkov imaging counter RICH-1 of the COMPASS experiment at CERN SPS. They are characterised by high photon yield, fast response and high rate capability and are successfully in operation since the 2006 COMPASS data taking. The photon detection system fully matches the expected performance. The design and construction of the photon detectors are described in detail.
The COMPASS experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…
The Deuteron Spin-dependent Structure Function g1(d) and its First Moment
We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.
Fast photon detection for COMPASS RICH-1
A fast photon detection system has been built and assembled for the upgrade of COMPASS RICH-1. The system is based on multianode photomultipliers coupled to fused silica lenses to collect the light from a larger surface and to guide it to the photocathode, preserving the position information. The emphasis is on the fast response and high rate capability of the detectors and the associated electronics. The photon detection system is now ready and it will be employed in the 2006 COMPASS data taking. We report about the system design and construction.
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
Abstract We present a determination of the gluon polarization Δ G / G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q 2 1 ( GeV / c ) 2 , with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6 LiD target. The helicity asymmetry for the selected events is 〈 A ∥ / D 〉 = 0.002 ± 0.019 ( stat ) ± 0.003 ( syst ) . From this value, we obtain in a leading-order QCD analysis Δ G / G = 0.024 ± 0.089 ( stat ) ± 0.057 ( syst ) at x g = 0.095 and μ 2 ≃ 3 ( GeV / c ) 2 .