0000000000350648

AUTHOR

M. Wagner

showing 9 related works from this author

Contribution of exclusive diffractive processes to the measured azimuthal asymmetries in SIDIS

2019

Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $\cos\phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measu…

HERMES experimentvirtual [photon]Hadronleptoproduction [hadron]measurement methodsNuclear TheoryVirtual particleHERMES01 natural sciencesSIDISCOMPASShadron: leptoproductionHigh Energy Physics - Experimentazimthal asymmetrieproduction [diffraction]High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)semi-inclusive reaction [deep inelastic scattering][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]COMPASS experimentNuclear ExperimentPhysicsdeep inelastic scattering: semi-inclusive reactionnucleonhep-phphoton: energyTMD obsvervableangular dependenceHigh Energy Physics - Phenomenologymodulationhadron: final stateTMD obsvervablesbeam [muon]asymmetry [angular distribution]interpretation of experimentsdeuteron: targettransverse momentum [quark]Nucleondiffraction: productionParticle Physics - ExperimentQuarkNuclear and High Energy PhysicsParticle physicsazimthal asymmetriesexclusive reactionangular distribution: asymmetryMesonFOS: Physical sciences530vector meson: production0103 physical scienceskinematics: effectlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530final state [hadron]010306 general physicsParticle Physics - PhenomenologyMuonmuon: beam010308 nuclear & particles physicsproduction [vector meson]hep-exenergy [photon]CERN SPSeffect [kinematics]lcsh:QC770-798quark: transverse momentumHigh Energy Physics::ExperimentTMD obsvervables; azimthal asymmetries; SIDIStarget [deuteron]photon: virtual
researchProduct

The PHENIX Collaboration

2009

Nuclear physicsPhysicsNuclear and High Energy PhysicsNuclear Physics A
researchProduct

Antiproton over proton and K$^-$ over K$^+$ multiplicity ratios at high $z$ in DIS

2020

The $\bar{\rm p} $ over p multiplicity ratio is measured in deep-inelastic scattering for the first time using (anti-) protons carrying a large fraction of the virtual-photon energy, $z>0.5$. The data were obtained by the COMPASS Collaboration using a 160 GeV muon beam impinging on an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2$ > 1 (GeV/$c$)$^2$ for the photon virtuality and $W > 5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. The range in Bjorken-$x$ is restricted to $0.01 < x < 0.40$. Protons and antiprotons are identified in the momentum range $20 ��60$ GeV/$c$. In the whole studied $z$-region, the $\…

ProtonIsoscalarHadron0 [higher-order]Deep-inelastic scatteringtarget: isoscalar01 natural sciencesCOMPASSdeep inelastic scattering [muon+ nucleon]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]anti-p: multiplicityInvariant massisoscalar [target]Nuclear Experiment (nucl-ex)Nuclear ExperimentHadron multiplicitiesNuclear ExperimentQuantum chromodynamicsPhysicsmultiplicity [K+]quark: fragmentation functionhigher-order: 0K+: multiplicityphotonperturbation theory: higher-orderhigher-order: 1multiplicity [anti-p]lcsh:QC1-999Bjorken [scaling]beam [muon]factorization [cross section]1 [higher-order]Particle Physics - Experimentperturbation theory [quantum chromodynamics]Nuclear and High Energy PhysicsFOS: Physical sciencesratio [multiplicity]530pQCDfragmentation function [quark]scaling: Bjorkenx-dependenceNuclear physicsQuantum chromodynamics; pQCD; Deep-inelastic scattering; Hadron multiplicities; COMPASSphase space0103 physical sciencesddc:530quantum chromodynamics: perturbation theory010306 general physicsmuon+ nucleon: deep inelastic scatteringp: multiplicityMuonmultiplicity [K-]multiplicity: ratio010308 nuclear & particles physicshep-exmuon: beamcross section: factorizationCERN SPSDeep inelastic scatteringmultiplicity: measured [charged particle]higher-order [perturbation theory]K-: multiplicityAntiprotonHigh Energy Physics::Experimentlcsh:PhysicsQuantum chromodynamicscharged particle: multiplicity: measuredhadronizationmultiplicity [p]experimental results
researchProduct

Effect of block copolymer architecture on the interfacial tension between immiscible polymers

2007

The effect of block copolymer additives on the interfacial tension (σ) is studied for the systems polydimethylsiloxane/polyethyleneoxide (A/B) and polyethylmethylsiloxane/polypropyleneoxide by means of a sessile-drop and a pendant-drop-apparatus. Diblockcopolymers (A-block-B), triblockcopolymers (A-block-B-block-A) and “tooth-brush” like copolymers (A backbone, B brushes) served as additives.

Surface tensionchemistry.chemical_classificationchemistry.chemical_compoundMaterials scienceChemical engineeringPolydimethylsiloxanechemistryCopolymerPolymer blendPolymer
researchProduct

Measurement of the cross section for hard exclusive π0 muoproduction on the proton

2020

Physics letters / B B805, 135454 (2020). doi:10.1016/j.physletb.2020.135454

Quantum chromodynamics; Muoproduction; Hard exclusive meson production; Generalised Parton Distributions; COMPASSPhotongeneralized parton distributionProtonPartonmeasured [cross section]01 natural sciencesCOMPASSGeneralised Parton DistributionPhoton polarization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentQuantum chromodynamicsPhysicsRange (particle radiation)Large Hadron ColliderCOMPASS; Generalised Parton Distributions; Hard exclusive meson production; Muoproduction; Quantum chromodynamicslcsh:QC1-999ddc:angular dependencebeam [muon]polarization [photon]Nuclear and High Energy Physicsexclusive reactionliquid: target [hydrogen]transverse [polarization]polarization: longitudinalinterferenceHard exclusive meson productionContext (language use)Muoproductionleptoproduction [pi0]530Nuclear physicspi0: leptoproductionGeneralised Parton Distributionshydrogen: liquid: target0103 physical sciencespolarization: transverseddc:530010306 general physicslongitudinal [polarization]010308 nuclear & particles physicsmuon: beamcross section: measuredphoton: polarizationHigh Energy Physics::Experimentlcsh:PhysicsQuantum chromodynamicsexperimental results
researchProduct

Triangle Singularity as the Origin of the a1(1420)

2021

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a 1 ( 1420 ) , decaying to f 0 ( 980 ) π . With a mass too close to and a width smaller than the axial-vector ground state a 1 ( 1260 ) , it was immediately interpreted as a new light exotic meson, similar to the X , Y , Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a 1 ( 1260 ) resonance into K * ( → K π ) K ¯ and subsequent rescattering through a triangle singularity into the coupled f 0 ( 980 ) π channel. The amplitude for this process is calculated using a new a…

PhysicsIsovector010308 nuclear & particles physicsGeneral Physics and AstronomyQuantum number01 natural sciencesResonance (particle physics)SingularityQuantum mechanics0103 physical sciencesCOMPASS experimentExotic meson010306 general physicsGround statePseudovectorPhysical Review Letters
researchProduct

The COMPASS experiment at CERN

2007

The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…

Nuclear and High Energy Physicsstraw tube detectorPhysics::Instrumentation and DetectorsProject commissioningFOS: Physical sciencesfixed-target experimentRICH detectorhadron structureHigh Energy Physics - ExperimenttargetMWPCNuclear physicsHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopyCOMPASS experimentscintillating fibre detectorNuclear Experimentsilicon microstrip detectorsInstrumentationSilicon microstrip detectorsPhysicsLarge Hadron ColliderStructure functionMicroMegas detectorfront-end electronicsDAQmicromegas detectordrift chamberPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentpolarisedGEM detectorcalorimetryParticle Physics - Experimentpolarised DISNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issue…

1997

0106 biological sciencesZucchini yellow mosaic virusBarley stripe mosaic virusbiologyEcology (disciplines)Plant ScienceCoat proteinbiology.organism_classification01 natural sciencesCucumber mosaic virus010602 entomologyInsect ScienceInternational congressBotany010606 plant biology & botanyPhytoparasitica
researchProduct

Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks

2010

We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N_f = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a~0.078 fm and a~0.086 fm with lattice sizes ranging from L~1.9 fm to L~2.8 fm. We measure with high statistical precision the light pseudoscalar mass m_PS and decay constant f_PS in a range 270 < m_PS < 510 MeV and determine the low energy parameters f_0, l_3 and l_4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of…

QuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHadronCharm quarkFOS: Physical sciencesLattice QCD2 FLAVORS01 natural sciencesCHIRAL PERTURBATION-THEORYCharm quarkLattice constantHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeTWISTED MASS FERMIONSChiral perturbation theoryWILSON QUARKS0103 physical sciencesddc:530ALGORITHM010306 general physicsSCALEPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFermionLattice QCDSIMULATIONSPseudoscalarHigh Energy Physics - PhenomenologyLattice gauge theoryChiral LagrangiansYANG-MILLS THEORYHigh Energy Physics::ExperimentPHASE-STRUCTUREMESONChiral lagrangiansLight hadronsJournal of High Energy Physics
researchProduct