6533b853fe1ef96bd12ad450
RESEARCH PRODUCT
Triangle Singularity as the Origin of the a1(1420)
G. D. AlexeevM. G. AlexeevA. AmorosoV. AndrieuxV. AnosovA. AntoshkinK. AugstenW. AugustyniakC. D. R. AzevedoB. BadełekF. BalestraM. BallJ. BarthR. BeckY. BedferJ. Berenguer AntequeraJ. BernhardM. BodlakF. BradamanteA. BressanV. E. BurtsevW.-c. ChangC. ChatterjeeM. ChiossoA. G. ChumakovS.-u. ChungA. CicuttinP. M. M. CorreiaM. L. CrespoD. D’agoS. Dalla TorreS. S. DasguptaS. DasguptaI. DenisenkoO. Yu. DenisovS. V. DonskovN. DoshitaCh. DreisbachW. DünnweberR. R. DusaevA. EfremovP. D. EversheimP. FaccioliM. FaesslerM. FingerM. FingerH. FischerC. FrancoJ. M. FriedrichV. FrolovF. GautheronO. P. GavrichtchoukS. GerassimovJ. GiarraI. GnesiM. GorzellikA. GrassoA. GridinM. Grosse PerdekampB. GrubeA. GuskovD. Von HarrachR. HeitzF. HerrmannN. HorikawaN. D’hoseC.-y. HsiehS. HuberS. IshimotoA. IvanovT. IwataM. JandekV. JaryR. JoostenP. JörgE. KabußF. KasparA. KerbiziB. KetzerG. V. KhaustovYu. A. KhokhlovYu. KisselevF. KleinJ. H. KoivuniemiV. N. KolosovK. Kondo HorikawaI. KonorovV. F. KonstantinovA. M. KotzinianO. M. KouznetsovA. KovalZ. KralF. KrinnerY. KulinichF. KunneK. KurekR. P. KurjataA. KvetonK. LavickovaS. LevoratoY.-s. LianJ. LichtenstadtP.-j. LinR. LongoV. E. LyubovitskijA. MaggioraA. MagnonN. MakinsN. MakkeG. K. MallotA. MaltsevS. A. MamonB. MarianskiA. MartinJ. MarzecJ. MatoušekT. MatsudaG. MattsonG. V. MeshcheryakovM. MeyerW. MeyerYu. V. MikhailovM. MikhasenkoE. MitrofanovN. MitrofanovY. MiyachiA. MorettiA. NagaytsevC. NaimD. NeyretJ. NovýW.-d. NowakG. NukazukaA. S. NunesA. G. OlshevskyM. OstrickD. PanzieriB. ParsamyanS. PaulH. PekelerJ.-c. PengM. PešekD. V. PeshekhonovM. PeškováN. PierreS. PlatchkovJ. PochodzallaV. A. PolyakovJ. PretzM. QuaresmaC. QuintansG. ReicherzC. RiedlT. RudnickiD. I. RyabchikovA. RybnikovA. RychterV. D. SamoylenkoA. SandaczS. SarkarI. A. SavinG. SbrizzaiH. SchmiedenA. SelyuninL. SinhaM. SluneckaJ. SmolikA. SrnkaD. SteffenM. StolarskiO. SubrtM. SulcH. SuzukiP. SznajderS. TessaroF. TessarottoA. ThielJ. TomsaF. ToselloA. TownsendV. TskhayS. UhlB. I. VasilishinA. VauthB. M. VeitJ. VelosoB. VenturaA. VidonM. ViriusM. WagnerS. WallnerK. ZarembaP. ZavadaM. ZavertyaevM. ZemkoE. ZemlyanichkinaY. ZhaoM. Ziembickisubject
PhysicsIsovector010308 nuclear & particles physicsGeneral Physics and AstronomyQuantum number01 natural sciencesResonance (particle physics)SingularityQuantum mechanics0103 physical sciencesCOMPASS experimentExotic meson010306 general physicsGround statePseudovectordescription
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a 1 ( 1420 ) , decaying to f 0 ( 980 ) π . With a mass too close to and a width smaller than the axial-vector ground state a 1 ( 1260 ) , it was immediately interpreted as a new light exotic meson, similar to the X , Y , Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a 1 ( 1260 ) resonance into K * ( → K π ) K ¯ and subsequent rescattering through a triangle singularity into the coupled f 0 ( 980 ) π channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the light-meson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
year | journal | country | edition | language |
---|---|---|---|---|
2021-08-18 | Physical Review Letters |