0000000000367309

AUTHOR

Ana Miguel

CHAIMELEON Project: Creation of a Pan-European Repository of Health Imaging Data for the Development of AI-Powered Cancer Management Tools

[EN] The CHAIMELEON project aims to set up a pan-European repository of health imaging data, tools and methodologies, with the ambition to set a standard and provide resources for future AI experimentation for cancer management. The project is a 4 year long, EU-funded project tackling some of the most ambitious research in the fields of biomedical imaging, artificial intelligence and cancer treatment, addressing the four types of cancer that currently have the highest prevalence worldwide: lung, breast, prostate and colorectal. To allow this, clinical partners and external collaborators will populate the repository with multimodality (MR, CT, PET/CT) imaging and related clinical data. Subse…

research product

A web application for the unspecific detection of differentially expressed DNA regions in strand-specific expression data

Abstract Genomic technologies allow laboratories to produce large-scale data sets, either through the use of next-generation sequencing or microarray platforms. To explore these data sets and obtain maximum value from the data, researchers view their results alongside all the known features of a given reference genome. To study transcriptional changes that occur under a given condition, researchers search for regions of the genome that are differentially expressed between different experimental conditions. In order to identify these regions several algorithms have been developed over the years, along with some bioinformatic platforms that enable their use. However, currently available appli…

research product

Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures

To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…

research product

Biotin-Genomic Run-On (Bio-GRO): A High-Resolution Method for the Analysis of Nascent Transcription in Yeast

Transcription is a highly complex biological process, with extensive layers of regulation, some of which remain to be fully unveiled and understood. To be able to discern the particular contributions of the several transcription steps it is crucial to understand RNA polymerase dynamics and regulation throughout the transcription cycle. Here we describe a new nonradioactive run-on based method that maps elongating RNA polymerases along the genome. In contrast with alternative methodologies for the measurement of nascent transcription, the BioGRO method is designed to minimize technical noise that arises from two of the most common sources that affect this type of strategies: contamination wi…

research product

Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress.

The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cell…

research product

SeqEditor: an application for primer design and sequence analysis with or without GTF/GFF files

[Motivation]: Sequence analyses oriented to investigate specific features, patterns and functions of protein and DNA/RNA sequences usually require tools based on graphic interfaces whose main characteristic is their intuitiveness and interactivity with the user’s expertise, especially when curation or primer design tasks are required. However, interface-based tools usually pose certain computational limitations when managing large sequences or complex datasets, such as genome and transcriptome assemblies. Having these requirments in mind we have developed SeqEditor an interactive software tool for nucleotide and protein sequences’ analysis.

research product

Corrigendum to “External conditions inversely change the RNA polymerase II elongation rate and density in yeast” [Biochim. Biophys. Acta 1829/11 (2013) 1248–1255]

research product

External conditions inversely change the RNA polymerase II elongation rate and density in yeast.

Elongation speed is a key parameter in RNA polymerase II (RNA pol II) activity. It affects the transcription rate, while it is conditioned by the physicochemical environment it works in at the same time. For instance, it is well-known that temperature affects the biochemical reactions rates. Therefore in free-living organisms that are able to grow at various environmental temperatures, such as the yeast Saccharomyces cerevisiae, evolution should have not only shaped the structural and functional properties of this key enzyme, but should have also provided mechanisms and pathways to adapt its activity to the optimal performance required. We studied the changes in RNA pol II elongation speed …

research product