Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector
[EN] We report a scheme for the detector system of confocal microscopes in which the pinhole and a large-area detector are substituted by a CCD camera. The numerical integration of the intensities acquired by the active pixels emulates the signal passing through the pinhole. We demonstrate the imaging capability and the optical sectioning of the system. Subtractive-imaging confocal microscopy can be implemented in a simple manner, providing superresolution and improving optical sectioning. (C) 2012 Optical Society of America
Filter performance parameters for vectorial high-aperture wave fields.
Performance parameters have been presented that can be used to compare the focusing performance of different optical systems, including the effect of pupil filters. These were originally given for the paraxial case and recently extended to the high-aperture scalar regime. We generalize these parameters to the full vectorial case for an aplanatic optical system illuminated by a plane-polarized wave. The behavior of different optical systems is compared.
Scanning microscopy with spatial sampling of the detector plane
We present the implementation of a confocal scanning microscope in which the signal detection is performed through a matrix sensor, specifically, a CCD camera. This kind of detection has several advantages over the conventional detection in confocal microscopes. One of those advantages is the possibility to recover information of the sample that vanishes when the confocal image is directly acquired by the integration of light into a signal. We demonstrate the applicability of the system which allows implementing super-resolution techniques in a very easy manner.