0000000000383061

AUTHOR

E. M. Verbitskaya

Particle detectors made of high-resistivity Czochralski silicon

We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 O cm and 1.9 kO cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, g-rays, lithium ions and electrons. Cz-Si was found to be more…

research product

Particle Detectors made of High Resistivity Czochralski Grown Silicon

We describe the fabrication process of fullsize silicon microstrip detectors processed on silicon wafers grown by magnetic Czochralski method. Defect analysis by DLTS spectroscopy as well as minority carrier lifetime measurements by µPCD method are presented. The electrical and detection properties of the Czochralski silicon detectors are comparable to those of leading commercial detector manufacturers. The radiation hardness of the Czochralski silicon detectors was proved to be superior to the devices made of traditional Float Zone silicon material.

research product

Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons

Abstract We processed pin-diodes on Czochralski silicon (Cz-Si), standard Float Zone silicon (Fz-Si) and oxygenated Fz-Si. The diodes were irradiated with 10, 20, and 30 MeV protons. Depletion voltages and leakage currents were measured as a function of the irradiation dose. Additionally, the samples were characterized by TCT and DLTS methods. The high-resistivity Cz-Si was found to be more radiation hard than the other studied materials.

research product

Silicon detectors for the sLHC

In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the RandD programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect …

research product

Radiation-hard semiconductor detectors for SuperLHC

An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10^35 cm^(- 2) s(- 1) has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016 cm 2. The CERN-RD50 project ''Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders'' has been established in 2002 to explore…

research product