0000000000391744

AUTHOR

Mirco Boschetti

Intercomparison of instruments for measuring leaf area index over rice

Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies in order to assess crop yield. LAI estimates can be classified as direct or indirect methods. Direct methods are destructive, time consuming, and difficult to apply over large fields. Indirect methods are non-destructive and cost-effective due to its portability, accuracy and repeatability. In this study, we compare indirect LAI estimates acquired from two classical instruments such as LAI-2000 and digital cameras for hemispherical photography, with LAI estimates acquired with a smart app (PocketLAI) installed on a mobile smartphone. In this work it is shown that LAI…

research product

Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale

The ERMES agromonitoring system for rice cultivations integrates EO data at different resolutions, crop models, and user-provided in situ data in a unified system, which drives two operational downstream services for rice monitoring. The first is aimed at providing information concerning the behavior of the current season at regional/rice district scale, while the second is dedicated to provide farmers with field-scale data useful to support more efficient and environmentally friendly crop practices. In this contribution, we describe the main characteristics of the system, in terms of overall architecture, technological solutions adopted, characteristics of the developed products, and funct…

research product

Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery

The recently launched and upcoming hyperspectral satellite missions, featuring contiguous visible-to-shortwave infrared spectral information, are opening unprecedented opportunities for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using PRISMA images collected during the 2020 and 202…

research product

A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System

Leaf area index (LAI) is a key biophysical variable fundamental in natural vegetation and agricultural land monitoring and modelling studies. This paper is aimed at comparing, validating and discussing different LAI satellite products from operational services and customized solution based on innovative Earth Observation (EO) data such as Landsat-7/8 and Sentinel-2A. The comparison was performed to assess overall quality of LAI estimates for rice, as a fundamental input of different scale (regional to local) operational crop monitoring systems such as the ones developed during the "An Earth obseRvation Model based RicE information Service" (ERMES) project. We adopted a multiscale approach f…

research product

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C)…

research product

Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring

Abstract This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal…

research product

Multitemporal Monitoring of Plant Area Index in the Valencia Rice District with PocketLAI

Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover and crop growth in environmental studies in order to assess crop yield. Frequently, plant canopy analyzers (LAI-2000) and digital cameras for hemispherical photography (DHP) are used for indirect effective plant area index (PAI(eff)) estimates. Nevertheless, these instruments are expensive and have the disadvantages of low portability and maintenance. Recently, a smartphone app called PocketLAI was presented and tested for acquiring PAI(eff) measurements. It was used during an entire rice season for indirect PAI(eff) estimations and for deriving reference high-resolution PAI(eff) maps. Ground PAI(eff) value…

research product

A high-resolution, integrated system for rice yield forecasting at district level

Abstract To meet the growing demands from public and private stakeholders for early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting system based on the integration of the WARM model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped area and to derive spatially distributed sowing dates, and for the dynamic assimilation of RS-derived leaf area index (LAI) data within the crop model. The system—tested for the main European rice production districts in Italy, Greece, and Spain—performed satisfactorily; >66% of the inter-annual yield variability was explained in six out of eight combinations of ecotype × district, with a maximum of 8…

research product

Testing Multi-Sensors Time Series of Lai Estimates to Monitor Rice Phenology: Preliminary Results

Timely and accurate information on crop growth and seasonal dynamics are increasingly needed to develop monitoring systems aimed to detect seasonal anomalies, support site specific management and estimate crop yield at the end of the season. In particular, frequent decametric information nowadays being provided exploiting the new generation of Earth Observation (EO) platforms are fundamental for farm level monitoring. This study presents an analysis aimed at fully exploiting dense time series of EO data derived from the combined use of ESA Sentinel-2A and NASA Landsat-7/8 imageries for crop phenological monitoring. Decametric Leaf Area Index (LAI) maps were generated for the year 2016 by in…

research product

Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data

Abstract Crop modeling and remote sensing are key tools to gain deeper understanding on cropping system dynamics and, ultimately, to increase the sustainability of agricultural productions. This study presents a system to estimate rice yields at sub-field scale based on the integration of a biophysical model and remotely sensed products. Leaf area index (LAI) data derived from decametric optical imageries (i.e., Landsat-8, Landsat-7 and Sentinel–2A) were assimilated into the WARM rice model via automatic recalibration of crop parameters at a fine spatial resolution (30 m × 30 m), targeting the lowest error between simulated and remotely sensed LAI. The performance of the system was evaluate…

research product

Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission

In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This mission will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the “agriculture and food security” domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the…

research product

Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling

research product

Advanced methods of plant disease detection. A review

International audience; Plant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we d…

research product