0000000000409038

AUTHOR

Ole Kristian Brandtzaeg

An automated and self-cleaning nano liquid chromatography mass spectrometry platform featuring an open tubular multi-hole crystal fiber solid phase extraction column and an open tubular separation column

An open tubular (OT) sample preparation/separation platform was developed. A multi-channel polymer layer open tubular (mPLOT) solid phase extraction (SPE) column was prepared by wall-coating the 126 channels (8μm inner diameter (ID) each) of a crystal fiber capillary with an organic polymer, namely poly(styrene-co-octadecene-co-divinylbenzene) (PS-OD-DVB). The mPLOT SPE was coupled on-line with a 10μm×2m poly(styrene-co-divinylbenzene) (PS-DVB) OT liquid chromatography column with nanospray mass spectrometry (OTLC-MS). Compared to using monolithic/particle-packed SPEs, mPLOT-SPE-OTLC allowed both fast loading and sufficient refocusing on the OT analytical column of small model compounds (su…

research product

Self-packed core shell nano liquid chromatography columns and silica-based monolithic trap columns for targeted proteomics.

Self-preparation of nano liquid chromatography (nLC) columns has advantages regarding cost and flexibility. For targeted proteomics, we evaluated several approaches for particle-packing nLC columns and manufacturing fritless silica-based monolithic trap columns (50μm inner diameter). Our preferred approach for nLC column preparation was to magnetically stir Accucore core shell particles (C18 stationary phase) in ACN/water (80/20, v/v) suspensions during pressure-driven filling of polymer-fritted standard fused silica capillaries. The columns were ready for use about one hour after preparation had begun. They had comparable peak capacities (peptides) to commercial columns, and satisfactory w…

research product

A critical evaluation of Amicon Ultra centrifugal filters for separating proteins, drugs and nanoparticles in biosamples

Amicon(®) Ultra centrifugal filters were critically evaluated for various sample preparations, namely (a) proteome fractionation, (b) sample cleanup prior to liquid chromatography mass spectrometry (LC-MS) measurement of small molecules in cell lysate, and (c) separating drug-loaded nanoparticles and released drugs for accurate release profiling in biological samples. (a) Filters of supposedly differing molar mass (MM) selectivity (10, 30, 50 and 100K) were combined to attempt fractionation of samples of various complexity and concentration. However, the products had surprisingly similar MM retentate/filtrate profiles, and the filters were unsuited for proteome fractionation. (b) Centrifuga…

research product