0000000000427101
AUTHOR
Eva Monroy
Resonant Raman scattering in self-assembledGaN∕AlNquantum dots
Self-assembled $\mathrm{Ga}\mathrm{N}∕\mathrm{Al}\mathrm{N}$ quantum dots have been investigated by means of Raman scattering. A resonant enhancement of the Raman peaks has been observed when the excitation is tuned above the GaN band-gap energy. The polar mode nature, either quasiconfined or interfacial, has been assigned after comparing with the polar optical modes of spheroidal dots calculated within the framework of the anisotropic dielectric continuum model. The built-in strain of the GaN dots induced a substantial blueshift of the nonpolar ${E}_{2H}$ Raman mode frequency. A theoretical model that analyzes the three-dimensional strain distribution in the quantum dots has been employed …
Raman study and theoretical calculations of strain in GaN quantum dot multilayers
Changes in strain and phonon mode energy in stacks of self-assembled GaN quantum dots embedded in AlN have been studied by means of Raman spectroscopy as a function of the number of periods. The ${E}_{2H}$ phonon modes related to the quantum dots and AlN spacers are clearly resolved, and their energies allow monitoring the state of strain of the dots and AlN spacers simultaneously. The evolution of the measured phonon frequencies and the associated strains are discussed in comparison with theoretical calculations of the inhomogeneous strain distribution in a system of coherent misfitting inclusions.
Raman study of strain in GaN/AlN quantum dot multilayered structures
Raman spectroscopy has been used to investigate self-assembled stacks of GaN/AlN quantum dots with increasing number of periods. The E2H phonon modes associated to GaN and AlN are clearly resolved with visible excitation, and their energies allow the simultaneous monitoring of the dot and barrier strain states. The compression of the quantum dots is evidenced by a shift of the E2H phonon mode of circa 29 cm–1 to higher energies with respect to its relaxed value. The strain of the AlN spacer is found to be correlated to that of the dot, with an increase in its tensile component for the samples with fewer periods and a partial relaxation for samples over 50 periods. Additionally, resonant eff…