0000000000432755

AUTHOR

Mojdeh Rastgoo

showing 12 related works from this author

On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA

2016

International audience; Visual saliency is an attention mechanism which helps to focus on regions of interest instead of processing the whole image or video data. Detecting salient objects in still images has been widely addressed in literature with several formulations and methods. However, visual saliency detection in videos has attracted little attention, although motion information is an important aspect of visual perception. A common approach for obtaining a spatio-temporal saliency map is to combine a static saliency map and a dynamic saliency map. In this paper, we extend a recent saliency detection approach based on principal component analysis (PCA) which have shwon good results wh…

Multilinear mapVisual perceptiondynamic scenesComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]050105 experimental psychologyImage (mathematics)visual saliencympca[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Salience (neuroscience)0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesComputer visionSaliency mapbusiness.industry05 social sciences[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitionVisualizationKadir–Brady saliency detectorPrincipal component analysis020201 artificial intelligence & image processingArtificial intelligencebusinessFocus (optics)
researchProduct

Attitude estimation from polarimetric cameras

2018

International audience; In the robotic field, navigation and path planning applications benefit from a wide range of visual systems (e.g. perspective cameras, depth cameras, catadioptric cameras, etc.). In outdoor conditions, these systems capture information in which sky regions cover a major segment of the images acquired. However, sky regions are discarded and are not considered as visual cue in vision applications. In this paper, we propose to estimate attitude of Unmanned Aerial Vehicle (UAV) from sky information using a polarimetric camera. Theoretically , we provide a framework estimating the attitude from the skylight polarized patterns. We showcase this formulation on both simulate…

Cover (telecommunications)Computer sciencebusiness.industrymedia_common.quotation_subject020208 electrical & electronic engineeringPerspective (graphical)PolarimetryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologySkylightField (computer science)[SPI.AUTO]Engineering Sciences [physics]/AutomaticCatadioptric system[SPI.AUTO] Engineering Sciences [physics]/AutomaticSky0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer visionArtificial intelligenceMotion planningbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingmedia_common[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
researchProduct

Automatic differentiation of melanoma from dysplastic nevi.

2015

International audience; Malignant melanoma causes the majority of deaths related to skin cancer. Nevertheless, it is the most treatable one, depending on its early diagnosis. The early prognosis is a challenging task for both clinicians and dermatologist, due to the characteristic similarities of melanoma with other skin lesions such as dysplastic nevi. In the past decades, several computerized lesion analysis algorithms have been proposed by the research community for detection of melanoma. These algorithms mostly focus on differentiating melanoma from benign lesions and few have considered the case of melanoma against dysplastic nevi. In this paper, we consider the most challenging task a…

Shape featuresSkin Neoplasms[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingDysplastic02 engineering and technology[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]030218 nuclear medicine & medical imagingColourPattern Recognition Automated0302 clinical medicine0202 electrical engineering electronic engineering information engineeringMelanoma[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/ImagingRadiological and Ultrasound Technology[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingMelanomaClassificationComputer Graphics and Computer-Aided DesignDermoscopy imaging3. Good healthRandom forest020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionAlgorithmsmedicine.medical_specialtyAutomatic differentiationFeature extractionHealth InformaticsDermoscopySensitivity and SpecificityDiagnosis Differential03 medical and health sciencesLesion analysisMachine learningImage Interpretation Computer-Assistedmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansRadiology Nuclear Medicine and imagingTextureneoplasmsbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.diseaseDermatologySupport vector machineBag-of-words modelSkin cancerbusinessDysplastic Nevus SyndromeComputerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
researchProduct

Classification of SD-OCT Volumes Using Local Binary Patterns: Experimental Validation for DME Detection

2016

International audience; This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Optical Coherence Tomography (OCT) has been a valuable diagnostic tool for DME, which is among the most common causes of irreversible vision loss in individuals with diabetes. Here, a classification framework with five distinctive steps is proposed and we present an extensive study of each step. Our method considers combination of various pre-processings in conjunction with Local Binary Patterns (LBP) features and different mapping strategies. Using linear and non-linear cl…

genetic structures[INFO.INFO-IM] Computer Science [cs]/Medical Imaging[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0302 clinical medicine[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Segmentationlcsh:OphthalmologySpeckleLBPDiagnosisPrevalencePreprocessorComputer visionSegmentationmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingExperimental validationDiabetic Macular Edema[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory OrgansOptical Coherence Tomography[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingResearch ArticleArticle SubjectLocal binary patterns03 medical and health sciencesSpeckle patternOptical coherence tomography[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyMedical imagingmedicineDME[INFO.INFO-IM]Computer Science [cs]/Medical ImagingCoherence (signal processing)Texture[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansRetinopathy[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitioneye diseasesOphthalmologyOCTlcsh:RE1-994030221 ophthalmology & optometryImagesArtificial intelligencebusiness030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Tackling the Problem of Data Imbalancing for Melanoma Classification

2016

Comunicació de congrés presentada a: 3rd International Conference on Bioimaging, BIOIMAGING 2016 - Part of 9th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2016, Roma, Italy Malignant melanoma is the most dangerous type of skin cancer, yet melanoma is the most treatable kind of cancer when diagnosed at an early stage. In this regard, Computer-Aided Diagnosis systems based on machine learning have been developed to discern melanoma lesions from benign and dysplastic nevi in dermoscopic images. Similar to a large range of real world applications encountered in machine learning, melanoma classification faces the challenge of imbalanced data, where …

medicine.medical_specialtyFeature vectorMELANOMA02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingImbalanced dataCLASSIFICATION030218 nuclear medicine & medical imaging03 medical and health sciencesDERMOSCOPY0302 clinical medicine0202 electrical engineering electronic engineering information engineeringmedicineIMBALANCEDStage (cooking)Melanoma[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryMelanomaCancermedicine.diseaseDermatologyData balancingFeature (computer vision)020201 artificial intelligence & image processingEnginyeria biomèdicaSkin cancerbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingBiomedical engineering
researchProduct

Classification of Melanoma Lesions Using Sparse Coded Features and Random Forests

2016

International audience; Malignant melanoma is the most dangerous type of skin cancer, yet it is the most treatable kind of cancer, conditioned by its early diagnosis which is a challenging task for clinicians and dermatologists. In this regard, CAD systems based on machine learning and image processing techniques are developed to differentiate melanoma lesions from benign and dysplastic nevi using dermoscopic images. Generally, these frameworks are composed of sequential processes: pre-processing, segmentation, and classification. This architecture faces mainly two challenges: (i) each process is complex with the need to tune a set of parameters, and is specific to a given dataset; (ii) the…

Computer scienceSparse codingComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-invariant feature transformImage processingDermoscopy02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineHistogram0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentationMelanoma[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingbusiness.industryMelanomaCancerPattern recognitionImage segmentationSparse approximationRandom forestsmedicine.diseaseClassificationRandom forest020201 artificial intelligence & image processingArtificial intelligenceSkin cancerNeural codingbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Classification of SD-OCT volumes with multi pyramids, LBP and HOG descriptors: application to DME detections.

2016

This paper deals with the automated detection of Diabetic Macular Edema (DME) on Optical Coherence Tomography (OCT) volumes. Our method considers a generic classification pipeline with preprocessing for noise removal and flattening of each B-Scan. Features such as Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) are extracted and combined to create a set of different feature vectors which are fed to a linear-Support Vector Machines (SVM) Classifier. Experimental results show a promising sensitivity/specificity of 0.75/0.87 on a challenging dataset.

Support Vector Machinegenetic structuresDatabases FactualComputer science[INFO.INFO-IM] Computer Science [cs]/Medical Imaging02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciences[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]0202 electrical engineering electronic engineering information engineeringImage Processing Computer-AssistedSegmentationComputer visionmedicine.diagnostic_test[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingDiabetic retinopathyHistogram of oriented gradientsmedicine.anatomical_structure020201 artificial intelligence & image processing[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingTomography Optical CoherenceLocal binary patternsFeature vectorDiabetic macular edemaFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingSensitivity and SpecificityMacular Edema010309 opticsOptical coherence tomographyHistogram0103 physical sciencesmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansMacular edema[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingRetinaDiabetic Retinopathybusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Pattern recognitionImage segmentationmedicine.diseaseeye diseasesSupport vector machineComputingMethodologies_PATTERNRECOGNITIONsense organsArtificial intelligencebusinessAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct

Normalization of T2W-MRI Prostate Images using Rician a priori

2016

International audience; Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and over…

Normalization (statistics)Computer scienceNormalization (image processing)T2W-MRI02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicineProstateRician fading0202 electrical engineering electronic engineering information engineeringmedicineComputer visionSegmentation[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingpre-processingProstate cancermedicine.diagnostic_testbusiness.industryCancerMagnetic resonance imagingImage segmentationmedicine.diseasemedicine.anatomical_structurenormalizationComputer-aided diagnosisA priori and a posteriori020201 artificial intelligence & image processingcomputer-aided diagnosisArtificial intelligencebusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Computer-Aided Detection for Prostate Cancer Detection based on Multi-Parametric Magnetic Resonance Imaging

2017

International audience; Prostate cancer (CaP) is the second most diagnosed cancer in men all over the world. In the last decades, new imaging techniques based on magnetic resonance imaging (MRI) have been developed improving diagnosis. In practice, diagnosis is affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and diagnosis (CAD) systems are being designed to help radiologists in their clinical practice. We propose a CAD system taking advantage of all MRI modalities (i.e., T2-W-MRI, DCE-MRI, diffusion weighted (DW)-MRI, MRSI). The aim of this CAD system was to provide a probabilistic map of cancer…

Malemedicine.medical_specialtySource codemedia_common.quotation_subject[INFO.INFO-IM] Computer Science [cs]/Medical ImagingContrast MediaCAD[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciencesProstate cancer0302 clinical medicine[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Prostatemedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumans[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML][SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingmedia_commonMulti parametricModality (human–computer interaction)[ INFO.INFO-IM ] Computer Science [cs]/Medical Imagingmedicine.diagnostic_testbusiness.industryProstatic NeoplasmsCancerMagnetic resonance imagingmedicine.diseaseMagnetic Resonance Imaging[STAT.ML] Statistics [stat]/Machine Learning [stat.ML]3. Good healthmedicine.anatomical_structureRadiologybusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing030217 neurology & neurosurgery
researchProduct

Classifying DME vs Normal SD-OCT volumes: A review

2016

International audience; This article reviews the current state of automatic classification methodologies to identify Diabetic Macular Edema (DME) versus normal subjects based on Spectral Domain OCT (SD-OCT) data. Addressing this classification problem has valuable interest since early detection and treatment of DME play a major role to prevent eye adverse effects such as blindness. The main contribution of this article is to cover the lack of a public dataset and benchmark suited for classifying DME and normal SD-OCT volumes, providing our own implementation of the most relevant methodologies in the literature. Subsequently, 6 different methods were implemented and evaluated using this comm…

genetic structuresComputer scienceDiabetic macular edemaEarly detection[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingMachine learningcomputer.software_genre01 natural sciences010309 optics03 medical and health sciences0302 clinical medicinebenchmark0103 physical sciencesmedicine[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingRetinaBlindnessbusiness.industryMachine Learning (ML)medicine.diseaseeye diseasesSpectral Domain OCT (SD-OCT)medicine.anatomical_structure030221 ophthalmology & optometryBenchmark (computing)Artificial intelligenceData miningsense organsDiabetic Macular Edema (DME)businesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Classification of SD-OCT Volumes with LBP: Application to DME Detection

2015

International audience; This paper addresses the problem of automatic classification of Spectral Domain OCT (SD-OCT) data for automatic identification of patients with Diabetic Macular Edema (DME) versus normal subjects. Our method is based on Local Binary Patterns (LBP) features to describe the texture of Optical Coherence Tomography (OCT) images and we compare different LBP features extraction approaches to compute a single signature for the whole OCT volume. Experimental results with two datasets of respectively 32 and 30 OCT volumes show that regardless of using low or high level representations, features derived from LBP texture have highly discriminative power. Moreover, the experimen…

genetic structuresLocal binary patternsComputer scienceDiabetic macular edemaSpectral domain02 engineering and technology[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineOptical coherence tomographyDiscriminative modelLBP0202 electrical engineering electronic engineering information engineeringmedicineDMEComputer vision[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingmedicine.diagnostic_testbusiness.industryeye diseasesDiabetic Macular EdemaOCT020201 artificial intelligence & image processingArtificial intelligencesense organsOptical Coherence Tomographybusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Optical Flow with Theoretically Justified Warping Applied to Medical Imaging

2015

International audience; Motion induced artifacts represent a major obstacle in the correct malignant lesion detection in medical imaging especially in MRI. The goal of this paper is to evaluate the performance of a new non-rigid motion correction algorithm based on the optical flow method. The proposed algorithm specifically addresses three major problems in MRI: the induced gaps in 3D images, the constancy assumption of current optical flow algorithms and the existence of large non-linear movement. In this paper, we compare the performance of extracted kinetic features from the tumor regions under consideration of several 2-D or 3-D motion compensation parameters for the differential diagn…

Medical ImagingMotion CompensationOptical Flow[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingMRI
researchProduct