0000000000450406

AUTHOR

Alice Turdo

MYC-driven epigenetic reprogramming favors the onset of tumorigensis by inducing a stem cell-like state

AbstractBreast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes resulted difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Over-expression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathw…

research product

Novel insights into cancer stem cells targeting: CAR-T therapy and epigenetic drugs as new pillars in cancer treatment

Cancer stem cells (CSCs) represent the most aggressive subpopulation present in the tumor bulk retaining invasive capabilities, metastatic potential and high expression levels of drug efflux pumps responsible for therapy resistance. Cancer is still an incurable disease due to the inefficacy of standard regimens that spare this subpopulation. Selective targeting of CSCs is still an unmet need in cancer research field. Aberrant epigenetic reprogramming promotes the initiation and maintenance of CSCs, which are able to escape the immune system defense. Promising therapeutic approaches able to induce the selective inhibition of this stem-like small subset include immunotherapy alone or in combi…

research product

Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells

Cancer stem cells (CSCs) are the tumor cell subpopulation responsible for resistance to chemotherapy, tumor recurrence, and metastasis. An efficient therapy must act on low proliferating quiescent-CSCs (q-CSCs). We here investigate the effect of magnetic hyperthermia (MHT) in combination with local chemotherapy as a dual therapy to inhibit patient-derived colorectal qCR-CSCs. We apply iron oxide nanocubes as MHT heat mediators, coated with a thermoresponsive polymer (TR-Cubes) and loaded with DOXO (TR-DOXO) as a chemotherapeutic agent. The thermoresponsive polymer releases DOXO only at a temperature above 44 °C. In colony-forming assays, the cells exposed to TR-Cubes with MHT reveal that qC…

research product

CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin

Summary Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless…

research product

miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance

AbstractThe ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumula…

research product

Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities

Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells—termed cancer stem cells (CSCs)—which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to th…

research product

Cancer Stem Cells: From Birth to Death

Abstract Conspicuous investigations have proven the role of cancer stem cells (CSCs) in the onset and progression of a plethora of liquid and solid neoplasms. CSCs are endowed with the capability of initiating tumor growth and becoming dormant at distant organ sites just waiting for optimal conditions amenable for metastatic outgrowth. This cancer subpopulation is inherently resistant to anticancer therapeutics, and its targeting could avoid metastatic disease, which is largely incurable, and clinical relapses. CSCs are considered the Achilles heel of cancer. However, many efforts are necessary to identify univocal CSC markers as well as specific CSC biomarkers of therapeutic response. Here…

research product

Targeting cancer stem cells and the tumor microenvironment

Compelling evidence indicates that the survival and behavior of cancer stem cells (CSCs) are positively regulated by specific stimuli received from the tumor microenvironment, which dictates the maintenance of stemness, invasiveness, and protection against drug-induced apoptotic signals. CSCs are per se endowed with multiple treatment resistance capabilities, thus the eradication of CSC pools offers a precious strategy in achieving a long-term cancer remission. Numerous therapies, aimed at eradicating CSCs, have been elaborated such as: (i) selective targeting of CSCs, (ii) modulating their stemness and (iii) influencing the microenvironment. In this context, markers commonly exploited to i…

research product

Editorial: The effects of chemotherapy towards the tumor microenvironment

3 p.-1 fig.

research product

Editorial: CAR T-cells: novel therapeutic approaches in the new era of cancer immunotherapy

Immunotherapy has emerged as one of the most effective treatments capable of overcoming tumor resistance mechanisms due to its ability to modulate the patient’s immune response against cancer. Personalized anti-tumor therapy based on T cells engineered to express a cancer-specific chimeric antigen receptor (CAR) acts directly on the immune system of patients. Specifically, this therapy enhances the recognition of cancer cells by T lymphocytes, thus promoting their elimination. In this Research Topic several aspects of CAR T-cell therapy, with particular emphasis on novel findings aimed at ameliorating the effectiveness of CAR T-cell-based immunotherapy and reducing side effects, are describ…

research product

Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy

The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.

research product

PO-298 MYC favours the onset of tumour initiating cells by inducing epigenetic reprogramming of mammary epithelial cells towards a stem cell-like state

ABSTRACT Introduction Breast cancer consists of highly heterogenous tumours whose cell of origin resulted difficult to be defined. Recent findings highlighted the possibility that tumor-initiating cells (TICs) may arise from dedifferentiation of lineage-committed cells, by reactivation of multipotency in response to oncogenic insults. MYC is the most frequently amplified oncogene in breast cancer and the activation of MYC pathway has been associated with the basal-like subtype, which is characterised by poor survival and lack of a specific therapeutic strategy. Although MYC has been considered a driver oncogene in breast cancer, its mechanism of action in tumour initiation has been poorly a…

research product

Targeting Phosphatases and Kinases: How to Checkmate Cancer

Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, altera…

research product

Cancer cell targeting by CAR-T cells: A matter of stemness

Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient’s immune system boosting. Within the tumor mass a subpopulation of cancer cells, known…

research product

Abstract 3897: Sam68 sustains self-renewal and invasiveness of breast cancer initiating cells

Abstract Background: Breast cancer is the leading worldwide cause of death among women due to the high metastatic spread of this disease. As by definition, Cancer Initiating Cells (CICs) are a fraction of primary tumor cells harboring tumorigenic potential and successful outgrowth at metastatic sites. Targeting molecular events affecting CICs peculiarities, as self-renewal and an innate chemoresistance, could improve the ineffectiveness of current therapies. Sam68, the major CD44 splicing regulator, is a multifunctional RNA-binding protein involved in multiple steps of RNA metabolism and its expression is aberrant in breast cancer. Herein, we highlight novel implications of Sam68 in the mam…

research product

Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis

Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and …

research product

Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells

Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased ex…

research product

Recapitulating thyroid cancer histotypes through engineering embryonic stem cells

AbstractThyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248…

research product

Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51

AbstractBreast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independen…

research product

Interleukin-30 feeds breast cancer stem cells via CXCL10 and IL23 autocrine loops and shapes immune contexture and host outcome

BackgroundBreast cancer (BC) progression to metastatic disease is the leading cause of death in women worldwide. Metastasis is driven by cancer stem cells (CSCs) and signals from their microenvironment. Interleukin (IL) 30 promotes BC progression, and its expression correlates with disease recurrence and mortality. Whether it acts by regulating BCSCs is unknown and could have significant therapeutic implications.MethodsHuman (h) and murine (m) BCSCs were tested for their production of and response to IL30 by using flow cytometry, confocal microscopy, proliferation and sphere-formation assays, and PCR array. Immunocompetent mice were used to investigate the role of BCSC-derived IL30 on tumor…

research product

IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition

Abstract The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor–positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rα antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24− cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversio…

research product

Cancer Stem Cell Biomarkers Predictive of Radiotherapy Response in Rectal Cancer: A Systematic Review

Background: Rectal cancer (RC) is one of the most commonly diagnosed and particularly challenging tumours to treat due to its location in the pelvis and close proximity to critical genitourinary organs. Radiotherapy (RT) is recognised as a key component of therapeutic strategy to treat RC, promoting the downsizing and downstaging of large RCs in neoadjuvant settings, although its therapeutic effect is limited due to radioresistance. Evidence from experimental and clinical studies indicates that the likelihood of achieving local tumour control by RT depends on the complete eradication of cancer stem cells (CSC), a minority subset of tumour cells with stemness properties. Methods: A systemati…

research product

Tumor and its microenvironment: a synergistic interplay.

The mutual and interdependent interaction between tumor and its microenvironment is a crucial topic in cancer research. Recently, it was reported that targeting stromal events could improve efficacies of current therapeutics and prevent metastatic spreading. Tumor microenvironment is a "complex network" of different cell types, soluble factors, signaling molecules and extracellular matrix components, which orchestrate the fate of tumor progression. As by definition, cancer stem cells (CSCs) are proposed to be the unique cell type able to maintain tumor mass and survive outside the primary tumor at metastatic sites. Being exposed to environmental stressors, including reactive oxygen species …

research product

MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermo…

research product

Correlative Raman-Electron-Light (CREL) Microscopy Analysis of Lipid Droplets in Melanoma Cancer Stem Cells.

Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light–electron microscopy and by correlative Raman imaging–scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an…

research product

Accumulation of Circulating CCR7+ Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway

Abstract Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion …

research product

Squamous Cell Tumors Recruit γδ T Cells Producing either IL17 or IFNγ Depending on the Tumor Stage

Abstract The identification of reciprocal interactions between tumor-infiltrating immune cells and the microenviroment may help us understand mechanisms of tumor growth inhibition or progression. We have assessed the frequencies of tumor-infiltrating and circulating γδ T cells and regulatory T cells (Treg) from 47 patients with squamous cell carcinoma (SCC), to determine if they correlated with progression or survival. Vδ1 T cells infiltrated SSC tissue to a greater extent than normal skin, but SCC patients and healthy subjects had similar amounts circulating. However, Vδ2 T cells were present at higher frequencies in circulation than in the tissue of either cancer patients or healthy donor…

research product

Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy

Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in…

research product

Destroying the Shield of Cancer Stem Cells: Natural Compounds as Promising Players in Cancer Therapy

In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxici…

research product

Meeting the Challenge of Targeting Cancer Stem Cells

Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives, drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated with metastatic disease, which is mostly incurable due to the refractoriness of metastatic cells to current treatments. Increasing data demonstrate that tumors contain a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor and metastasis. CSCs are endowed with multiple treatment resistance capabilities comprising a highly efficient DNA damage repair machinery, the activation of survival pathways, enhanced cellular plasticity, immune evasion and the adaptation to a hostile microenvironment. Due…

research product

PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells

ObjectiveCancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy.DesignA collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional…

research product

Nodular morphea keloidal type: A rare case with paradigmatic histopathology significantly accompanied by a flawless surgical scar

Nodular morphea is a rare variant of localized scleroderma, clinically and histopathologically characterized by cutaneous nodules or plaques associated or superimposed to the flat lesions of classic morphea. Accordingly, the association of such outgrowths with systemic sclerosis is designated as nodular scleroderma. Sometimes these lesions appear as firm, erythematous and irregularly curvy plaques resembling keloids or hypertrophic scars, thus characterizing keloidal morphea or keloidal scleroderma. These mystifying features can make the diagnosis challenging, especially in the absence of a well‐documented medical history. Here we report a case of keloidal morphea with multiple histopatholo…

research product

Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy

Abstract Recombinant erythropoietin (EPO) analogs [erythropoiesis-stimulating agents (ESA)] are clinically used to treat anemia in patients with cancer receiving chemotherapy. After clinical trials reporting increased adverse events and/or reduced survival in ESA-treated patients, concerns have been raised about the potential role of ESAs in promoting tumor progression, possibly through tumor cell stimulation. However, evidence is lacking on the ability of EPO to directly affect cancer stem–like cells, which are thought to be responsible for tumor progression and relapse. We found that breast cancer stem–like cells (BCSC) isolated from patient tumors express the EPO receptor and respond to …

research product

ΔNp63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis

P63 is a transcription factor belonging to the family of p53, essential for the development and differentiation of epithelia. In recent years, it has become clear that altered expression of the different isoforms of this gene can play an important role in carcinogenesis. The p63 gene encodes for two main isoforms known as TA and ΔN p63 with different functions. The role of these different isoforms in sustaining tumor progression and metastatic spreading however has not entirely been clarified. Here we show that breast cancer initiating cells express ΔNp63 isoform that supports a more mesenchymal phenotype associated with a higher tumorigenic and metastatic potential. On the contrary, the ma…

research product

Role of Type I and II Interferons in Colorectal Cancer and Melanoma

Cancer can be considered an aberrant organ with a hierarchical composition of different cell populations. The tumor microenvironment, including the immune cells and related cytokines, is crucial during all the steps of tumor development. In particular, type I and II interferons are involved in a plethora of mechanisms that regulate immune responses in cancer, thus balancing immune escape versus immune surveillance. Interferons are involved in both the direct and indirect regulation of cancer cell proliferation and metastatic potential. The mutational background of genes involved in interferons signaling could serve as a prognostic biomarker and a powerful tool to screen cancer patients elig…

research product

Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery.

Obesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored. Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200…

research product