0000000000452044

AUTHOR

K. Han

Measurement of the Soft-Drop Jet Mass in pp Collisions at s=13  TeV with the ATLAS Detector

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by the ...

research product

The design and performance of IceCube DeepCore

The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector a…

research product

Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at s=13  TeV with the ATLAS Detector

This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, μμ, or eμ) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1  fb^{-1} of proton-proton collision data taken at sqrt[s]=13  TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are signifi…

research product

Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino c…

research product

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.

We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.

research product

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

research product

Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector.

On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gamm…

research product

First year performance of the IceCube neutrino telescope

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

research product

Constraints on off-shell Higgs boson production and the Higgs boson total width in ZZ → 4ℓ and ZZ → 2ℓ2ν final states with the ATLAS detector

A measurement of off-shell Higgs boson production in the and decay channels, where ℓ stands for either an electron or a muon, is performed using data from proton–proton collisions at a centre-of-mass energy of TeV. The data were collected by the ATLAS experiment in 2015 and 2016 at the Large Hadron Collider, and they correspond to an integrated luminosity of . An observed (expected) upper limit on the off-shell Higgs signal strength, defined as the event yield normalised to the Standard Model prediction, of 3.8 (3.4) is obtained at 95% confidence level (CL). Assuming the ratio of the Higgs boson couplings to the Standard Model predictions is independent of the momentum transfer of the Higgs…

research product

Search for Neutrino‐induced Cascades from Gamma‐Ray Bursts with AMANDA

Using the neutrino telescope AMANDA-II, we have conducted two analyses searching for neutrino-induced cascades from gamma-ray bursts. No evidence of astrophysical neutrinos was found, and limits are presented for several models. We also present neutrino effective areas which allow the calculation of limits for any neutrino production model. The first analysis looked for a statistical excess of events within a sliding window of 1 or 100 seconds (for short and long burst classes, respectively) during the years 2001-2003. The resulting upper limit on the diffuse flux normalization times E^2 for the Waxman-Bahcall model at 1 PeV is 1.6 x 10^-6 GeV cm^-2 s^-1 sr^-1 (a factor of 120 above the the…

research product

The IceCube data acquisition system: Signal capture, digitization, and timestamping

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, func…

research product

Measurement of acoustic attenuation in South Pole ice

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

research product

Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb¯τ+τ− Decay Channel in pp Collisions at s=13  TeV with the ATLAS Detector

A search for resonant and nonresonant pair production of Higgs bosons in the b (b) over bar tau(+)tau(-) final state is presented. The search uses 36.1 fb(-1) of pp collision data with root s = 13 ...

research product

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\pm 3.6$. At 90% confidence we set an upper limit of $E^2\Phi_{90%CL}<3.6\times10^{-7} GeV \cdot cm^{-2} \cdot s^{-1}\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\Phi \propto E^{-2}$ and that the flavor composition of the $\nu_e : \nu_\mu : \nu…

research product

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

research product

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

research product

TH-302 + Gemcitabine (G + T) vs Gemcitabine (G) in Patients with Previously Untreated advanced Pancreatic Cancer (PAC)

ABSTRACT Background TH-302 is a hypoxia targeted prodrug with a hypoxia-triggered 2-nitroimidazole component designed to release the DNA alkylator, bromo-isophosphoramide mustard (Br-IPM), when reduced in severe hypoxia. A randomized Phase 2B study (NCT01144455) was conducted to assess the benefit of G + T to standard dose G as first-line therapy of PAC. Materials and methods An open-label multi-center study of two dose levels of TH-302 (240 mg/m2 or 340 mg/m2) in combination with G versus G alone (randomized 1:1:1). G (1000 mg/m2) and T were administered IV over 30-60 minutes on Days 1, 8 and 15 of a 28-day cycle. Patients on the G could crossover after progression and be randomized to a G…

research product

Background studies for acoustic neutrino detection at the South Pole

The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to …

research product

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006)

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) Weihai, China - August 15-22

research product

Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.

research product

Calibration and Characterization of the IceCube Photomultiplier Tube

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

research product

Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II

The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-…

research product

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

research product

The IceCube prototype string in Amanda

The Antarctic Muon And Neutrino Detector Array (Amanda) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. IceCube is a cubic-kilometer-sized expansion of Amanda currently being built at the South Pole. In IceCube the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the Amanda array in the year 2000. In this paper we describe the technology and demonst…

research product

Observation and Measurement of Forward Proton Scattering in Association with Lepton Pairs Produced via the Photon Fusion Mechanism at ATLAS

The observation of forward proton scattering in association with lepton pairs (eþe− þ p or μþμ− þ p) produced via photon fusion is presented. The scattered proton is detected by the ATLAS Forward Proton spectrometer, while the leptons are reconstructed by the central ATLAS detector. Proton-proton collision data recorded in 2017 at a center-of-mass energy of ffiffiffi s p ¼ 13 TeV are analyzed, corresponding to an integrated luminosity of 14.6 fb−1. A total of 57 (123) candidates in the ee þ p (μμ þ p) final state are selected, allowing the background-only hypothesis to be rejected with a significance exceeding 5 standard deviations in each channel. Proton-tagging techniques are introduced f…

research product

Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA

A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino Detector Array (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino background has been found. Upper limits at 90% confidence level have been set on the annihilation rate of neutralinos at the center of the Earth, as well as on the muon flux at AMANDA induced by neutrinos created by the annihilation products.

research product

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…

research product

Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at s=13TeV with the ATLAS detector

A search for a heavy resonance decaying into WZ in the fully leptonic channel (electrons and muons) is performed. It is based on proton–proton collision data collected by the ATLAS experiment at the Large Hadron Collider at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.1 fb −1 . No significant excess is observed over the Standard Model predictions and limits are set on the production cross section times branching ratio of a heavy vector particle produced either in quark–antiquark fusion or through vector-boson fusion. Constraints are also obtained on the mass and couplings of a singly charged Higgs boson, in the Georgi–Machacek model, produced through ve…

research product

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by oth…

research product

All-particle cosmic ray energy spectrum measured with 26 IceTop stations

Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016

research product

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \Phi^{0}=(E/…

research product

IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae ( Corrigendum )

Keywords: neutrinos ; supernovae: general ; instrumentation: detectors ; errata ; addenda Reference EPFL-ARTICLE-198916doi:10.1051/0004-6361/201117810eView record in Web of Science Record created on 2014-05-19, modified on 2017-05-12

research product

ERRATUM: "Search for High-Energy Muon Neutrinos from the "Naked-Eye" GRB 080319B with the Icecube Neutrino Telescope" (2009, ApJ, 701, 1721)

We have noticed some mistakes in formulae (A2) and (A5) in the appendix of our paper. The errors are not present in the code used in the analysis and hence none of the plots or results is affected. The correct formulae are below.

research product

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 -- 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

research product

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

research product

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

research product

Measurement of photon?jet transverse momentum correlations in 5.02 TeV Pb + Pb and pp collisions with ATLAS

Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb−1 of Pb + Pb collision data at TeV and 25 pb−1 of pp collision data at TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum GeV and are paired with all jets in the event that have GeV and pseudorapidity . The transverse momentum balance given by the jet-to-photon ratio, , is measured for pairs with azimuthal opening angle . Distributions of the per-photon jet yield as a function…

research product

On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN mode…

research product

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon ne…

research product

Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector.

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250 - 5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

research product

Search for neutrino-induced cascades with five years of AMANDA data

Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…

research product

Extending the search for neutrino point sources with iceCube above the horizon

Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmosp…

research product