0000000000457812
AUTHOR
Margherita Lattuca
D pseudo-bosoni in modelli quantistici
Vacuum Casimir energy densities and field divergences at boundaries
We consider and review the emergence of singular energy densities and field fluctuations at sharp boundaries or point-like field sources in the vacuum. The presence of singular energy densities of a field may be relevant from a conceptual point of view, because they contribute to the self-energy of the system. They should also generate significant gravitational effects. We first consider the case of the interface between a metallic boundary and the vacuum, and obtain the structure of the singular electric and magnetic energy densities at the interface through an appropriate limit from a dielectric to an ideal conductor. Then, we consider the case of a point-like source of the electromagneti…
A short note on Non-boson operators from a 1-dimensional gravitational like Hamiltonian
In this paper, using factorization technique, we find the ground state for a 1--dimensional gravitational like Hamiltonian.
Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms
We study the resonance interaction between two uniformly accelerated identical atoms, one excited and the other in the ground state, prepared in a correlated (symmetric or antisymmetric) state and interacting with the scalar field or the electromagnetic field in the vacuum state. In this case (resonance interaction), the interatomic interaction is a second-order effect in the atom-field coupling. We separate the contributions of vacuum fluctuations and radiation reaction to the resonance energy shift of the system, and show that only radiation reaction contributes, while Unruh thermal fluctuations do not affect the resonance interaction. We also find that beyond a characteristic length scal…
Non-Hermitian Hamiltonian for a Modulated Jaynes-Cummings Model with PT Symmetry
We consider a two-level system such as a two-level atom, interacting with a cavity field mode in the rotating wave approximation, when the atomic transition frequency or the field mode frequency is periodically driven in time. We show that in both cases, for an appropriate choice of the modulation parameters, the state amplitudes in a generic $n${-}excitation subspace obey the same equations of motion that can be obtained from a \emph{static} non-Hermitian Jaynes-Cummings Hamiltonian with ${\mathcal PT}$ symmetry, that is with an imaginary coupling constant. This gives further support to recent results showing the possible physical interest of ${\mathcal PT}$ symmetric non-Hermitian Hamilto…
Van der Waals and resonance interactions between accelerated atoms in vacuum and the Unruh effect
We discuss different physical effects related to the uniform acceleration of atoms in vacuum, in the framework of quantum electrodynamics. We first investigate the van der Waals/Casimir-Polder dispersion and resonance interactions between two uniformly accelerated atoms in vacuum. We show that the atomic acceleration significantly affects the van der Waals force, yielding a different scaling of the interaction with the interatomic distance and an explicit time dependence of the interaction energy. We argue how these results could allow for an indirect detection of the Unruh effect through dispersion interactions between atoms. We then consider the resonance interaction between two accelerat…
D pseudo-bosons in quantum models
Abstract We show how some recent models of PT-quantum mechanics perfectly fit into the settings of D pseudo-bosons, as introduced by one of us. Among the others, we also consider a model of non-commutative quantum mechanics, and we show that this model too can be described in terms of D pseudo-bosons.
Exceptional points in a non-Hermitian extension of the Jaynes-Cummings Hamiltonian
We consider a generalization of the non-Hermitian \({\mathcal PT}\) symmetric Jaynes-Cummings Hamiltonian, recently introduced for studying optical phenomena with time-dependent physical parameters, that includes environment-induced decay. In particular, we investigate the interaction of a two-level fermionic system (such as a two-level atom) with a single bosonic field mode in a cavity. The states of the two-level system are allowed to decay because of the interaction with the environment, and this is included phenomenologically in our non-Hermitian Hamiltonian by introducing complex energies for the fermion system. We focus our attention on the occurrence of exceptional points in the spec…
Three-dimensional topological loops with nilpotent multiplication groups
In this paper we describe the structure of indecomposable nilpotent Lie groups which are multiplication groups of three-dimensional simply connected topological loops. In contrast to the 2-dimensional loops there is no connected topological loop of dimension ≥ 3 such that the Lie algebra of its multiplication group is an elementary filiform Lie algebra. We determine the indecomposable nilpotent Lie groups of dimension ≤ 6 and their subgroups which are the multiplication groups and the inner mapping groups of the investigated loops. We prove that all multiplication groups have 1-dimensional centre and the corresponding loops are centrally nilpotent of class 2.