0000000000460060

AUTHOR

L. Collica

showing 36 related works from this author

Solar neutrino physics with Borexino

2018

We present the most recent solar neutrino results from the Borexino experiment at the Gran Sasso underground laboratory. In particular, refined measurements of all neutrinos produced in the {\it pp} fusion chain have been made. It is the first time that the same detector measures the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos are also discussed.

fusionPhysics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Astrophysics::High Energy Astrophysical PhenomenaSolar neutrinoFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Nuclear Experiment010303 astronomy & astrophysicsBorexinoPhysicsp p: fusion010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)Gran Sasso* Automatic Keywords *Physics::Space PhysicsUnderground laboratoryBorexinoHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoexperimental resultsSciPost Physics Proceedings
researchProduct

Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

2017

We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…

moment: dipoleAstronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray experiments; ultra high energy cosmic rays; Astronomy and AstrophysicsCosmic rayanisotropyultra high energy cosmic raysSURFACE DETECTOR01 natural sciencesLARGE-SCALE DISTRIBUTIONwaveletSEARCH0103 physical sciencesARRIVAL DIRECTIONSHigh Energy Physicscosmic radiation: UHEAnisotropy010303 astronomy & astrophysicsZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectral densityAstronomy and AstrophysicsEEVASTROFÍSICAComputational physicsAugerCosmic ray experiments; ultra high energy cosmic raysobservatoryDipolecosmic ray experiments ultra high energy cosmic raysRESOLUTIONMoment (physics)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGpower spectrum: angular dependenceARRAYcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

A search for point sources of EeV neutrons

2012

A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

AstronomyEnergy fluxAstrophysics01 natural sciences7. Clean energyNeutron fluxObservatorycosmic rays – Galaxy: disk – methods: data analysisNeutron detection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma rayAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPierre Auger ObservatoryCOSMIC-RAYSRadiación cósmicaUltra High Energy Cosmic RayComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMASSIVE BLACK-HOLEFísica nuclearPierre Auger Observatory high-energy neutron sources neutron flux limitAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayGalaxiaGalaxy: diskcosmic rays0103 physical scienceshigh-energy neutron sourcesNeutronCosmic-ray observatoryCiencias ExactasANISOTROPY010308 nuclear & particles physicsGAMMA-RAYSAnálisis de datosAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAneutron flux limitmethods: data analysisNÊUTRONSSpace and Planetary ScienceUltra High Energy Cosmic RaysExperimental High Energy Physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]GALACTIC-CENTER
researchProduct

The measurement of the pp chain solar neutrinos in Borexino

2019

Proton–proton chain reactionPhysicsParticle physicsSolar neutrinoBorexino
researchProduct

Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesMAGNETIC-FIELDScosmic raysObservatory0103 physical sciencesUltra-high-energy cosmic rayAnisotropyastroparticle physics – cosmic rays010303 astronomy & astrophysicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryAstroparticle physicsPhysicsCOSMIC cancer database010308 nuclear & particles physicsOBSERVATÓRIOS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyastroparticle physicFísicaAstronomy and AstrophysicsRadiación cósmica13. Climate actionSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsQuadrupoleComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica de partículasFísica nuclearAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

2013

To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesCosmic rayultra high energy cosmic rays01 natural sciencesultra high energy cosmic rayInterpretation (model theory)//purl.org/becyt/ford/1 [https]Nuclear physics0103 physical sciencesPARTICLES010306 general physicsDispersion (water waves)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryCOMPOSICIÓN DE MASAEXPERIMENTO AUGER010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsObservableASTROFÍSICA//purl.org/becyt/ford/1.3 [https]RAYOS COSMICOSAstronomíaENERGY COSMIC-RAYSMODELDistribution (mathematics)Air showerParticlesUltra High Energy Cosmic RaysExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGEnergy cosmic-raysFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASSimulationcosmic ray experiments; ultra high energy cosmic raysModel
researchProduct

Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

2016

Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

Hadronic interaction[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Particle physicsCOLLISIONSAstronomyAstrophysics::High Energy Astrophysical PhenomenaHadronFOS: Physical sciencesGeneral Physics and AstronomyCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentAugerHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Observatory0103 physical sciencesCalibrationHigh Energy PhysicsUHE Cosmic Rays010306 general physicsParticle PhysicsCosmic raysGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryEnergyMuon010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaInteraction modelASTROFÍSICAHigh Energy Physics - Phenomenology13. Climate actionExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Perspectives for CNO neutrino detection in Borexino

2018

International audience; Borexino measured with unprecedented accuracy the fluxes of solar neutrinos emitted at all the steps of the pp fusion chain. Still missing is the measurement of the flux of neutrinos produced in the CNO cycle. A positive measurement of the CNO neutrino flux is of fundamental importance for understanding the evolution of stars and addressing the unresolved controversy on the solar abundances. The measurement of the CNO neutrino flux in Borexino is challenging because of the low intensity of this component (CNO cycle accounts for about 1% of the energy emitted by Sun), the lack of prominent spectral features and the presence of background sources. The main background c…

CNO cycleexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidSolar neutrinosbismuth: admixtureAstrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energySolar neutrinoCNO-cycleneutrino: fluxAstrophysics::Solar and Stellar Astrophysics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Stellar evolutionBorexinoliquid scintillatorAstrophysics::Galaxy AstrophysicsPhysicsEnergy distributiondetectorbackgroundbismuth: nuclideCNO cycleNeutrino detector13. Climate actionBorexinoExperimental methodsNeutrino
researchProduct

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

2013

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Atmospheric MonitoringSatellitesInfraredAstronomyCloud coverFOS: Physical sciencesAtmospheric monitoring01 natural sciencesCiencias de la Tierra y relacionadas con el Medio AmbienteAuger//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/1.5 [https]ObservatoryClouds0103 physical sciencesExtensive air showers010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionCiencias ExactasPhysicsPierre Auger ObservatoryUHE Cosmic Rays atmosphere010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomyPierre Auger ObservatoryAstronomy and AstrophysicsUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]INFRAVERMELHOExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPierre Auger observatoryultra-high energy cosmic rays; Pierre Auger Observatory; extensive air showers; atmospheric monitoring; clouds; satellitesFísica nuclearSatelliteCentral Laser FacilityExtensive Air ShowersAstrophysics - Instrumentation and Methods for AstrophysicsMeteorología y Ciencias AtmosféricasSYSTEMCIENCIAS NATURALES Y EXACTASAstroparticle Physics
researchProduct

CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

2017

International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…

Physicsneutrino: sterile: search forHistorySterile neutrinoParticle physics010308 nuclear & particles physicsInitial activitysensitivity01 natural sciencesComputer Science ApplicationsEducationPHYSICSPhysics and Astronomy (all)cesium0103 physical sciencesOSCILLATIONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexinoproposed experimentNeutrino010306 general physicsantineutrino: particle sourceBorexinotalk: Moscow 2017/10/02
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Search for point-like sources of ultra-high energy neutrinos at the pierre auger observatory and improved limit on the diffuse flux of tau neutrinos

2012

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy Eν between 1017 eV and 1020 eV from point-like sources across the sky south of +55º and north of −65º declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth’s crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5 years of a full surface detector array for the Earth-skimming channel and ∼2 years…

Physics::Instrumentation and DetectorsSolar neutrinoAstronomyAstrophysics01 natural sciences7. Clean energyneutrinoTelescopiosTau neutrinoastroparticle physics; cosmic rays; neutrinos; telescopes010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)cosmic rayPhysics[PHYS]Physics [physics]High Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrinosCOSMIC-RAYSCosmic neutrino backgroundastroparticle physicsMeasurements of neutrino speedFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstrophysics::High Energy Astrophysical PhenomenaTELESCÓPIOSFOS: Physical sciencesAstroparticle physiccosmic rays0103 physical sciencesDETECTORCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaAstronomy and AstrophysicstelescopesSolar neutrino problem13. Climate actionSpace and Planetary ScienceExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

A Targeted Search for Point Sources of EeV Neutrons

2014

A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …

Astrofísica[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesGalaxy: diskcosmic raysNeutron fluxObservatory0103 physical sciencesdata analysis [methods]Neutron010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Galactic CenterPierre Auger Observatory; cosmic ray; neutronsAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsGalactic planemethods: data analysisMagnetic fluxGalaxyAstronomíaSpace and Planetary ScienceExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGddc:520Física nuclearAstrophysics - High Energy Astrophysical Phenomenadisk [Galaxy]
researchProduct

Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic …

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Radiación CósmicaAstronomyMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesGALACTIC MAGNETIC-FIELDSAuger[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysObservatory0103 physical sciencesastroparticle physics; cosmic raysAnisotropy010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Ciencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsPierre Auger ObservatoryANISOTROPY010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísicaAstronomy and AstrophysicsENERGY-SPECTRUMUltra-High Energy Cosmic Rays Pierre Auger Observatory Large Scale AnisotropiesSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsROTATIONARRAYFísica nuclearAstroparticle physicsRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

2018

With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or sc…

Physics::Instrumentation and DetectorsAstronomyengineering01 natural sciencesultra high energy cosmic rayAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic ray experiments; cosmic rays detectors; ultra high energy cosmic rays; Astronomy and Astrophysics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cosmic ray experiments cosmic rays detectors ultra high energy cosmic rays Astronomy and Astrophysics.Absorption (electromagnetic radiation)Physicsradio waveSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsDETETORESCOSMIC-RAYSAugerobservatoryAmplitudecosmic rays detectorsAstrophysics - Instrumentation and Methods for Astrophysicsnumerical calculations: Monte CarloairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentultra high energy cosmic rayscascade: electromagneticOptics0103 physical sciencesHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]cosmic rays detector010306 general physicscosmic ray experiments cosmic rays detectors ultra high energy cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithAstrophysiquePierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsbusiness.industryScatteringhep-exdetector: surfacescatteringAstronomy and AstrophysicsAstronomieAir showerExperimental High Energy PhysicsARRAYHigh Energy Physics::Experimentcosmic ray experimentscosmic ray experiments; cosmic rays detectors; ultra high energy cosmic raysEMISSIONbusinessabsorptionastro-ph.IM
researchProduct

Improved measurement of $^8$B solar neutrinos with $1.5  kt·y$ of Borexino exposure

2017

We report on an improved measurement of the $^8$B solar neutrino interaction rate with the Borexino experiment at the Laboratori Nazionali del Gran Sasso. Neutrinos are detected via their elastic scattering on electrons in a large volume of liquid scintillator. The measured rate of scattered electrons above 3 MeV of energy is $0.223\substack{+0.015 \\ -0.016}\,(stat)\,\substack{+0.006 \\ -0.006}\,(syst)$ cpd/100 t, which corresponds to an observed solar neutrino flux assuming no neutrino flavor conversion of $\Phi\substack{\rm ES \\ ^8\rm B}=2.57\substack{+0.17 \\ -0.18}(stat)\substack{+0.07\\ -0.07}(syst)\times$10$^6$ cm$^{-2}\,$s$^{-1}$. This measurement exploits the active volume of the …

model: solarneutrino: solarPhysics::Instrumentation and Detectorsscintillation counter: liquidFOS: Physical sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)cosmic raysS067HPT[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Experiments in gravityNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)neutrino: interactionMSW effectcosmic radiation: energy spectrumscintillation counter: targetS067SESneutrino electron: elastic scatteringGran SassoAstrophysics - Solar and Stellar Astrophysicsneutrino: flavorHigh Energy Physics::ExperimentBorexino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyboron: semileptonic decayexperimental results
researchProduct

Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.

2012

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…

Ciencias Astronómicas[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical Phenomenashowers: atmosphere | cosmic radiation: UHE | polarization: effect | Auger | radio wave: emission | radio wave: detector | galaxy | background | reflection | noise | detector: networkFOS: Physical sciencesCosmic ray01 natural sciencesSignalKASCADEMHZOpticsSIGNALS0103 physical sciencesTransient responseTime domain010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physics[PHYS]Physics [physics]PhysicsPierre Auger ObservatorySPECTRUMLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsbusiness.industryPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]ATMOSFERA (MONITORAMENTO)Air showerAntennaExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONAntennasFísica nuclearAntenna (radio)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data

2017

A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of $\mu_{\nu}^{eff}$ $<$ 2.8$\cdot$10$^{-11}$ $\mu_{B}$ at 90\% c.l. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments.Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magne…

Physics and Astronomy (miscellaneous)neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrino01 natural sciencesHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)SPIN ROTATIONHigh Energy Physics - Phenomenology (hep-ph)electron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar AstrophysicsBorexinoS066MGMgalliumPhysicsMagnetic momentneutrino: magnetic momentHigh Energy Physics - Phenomenologyneutrino: momentNeutrino detectorneutrino: flavorneutrino: MajoranaMeasurements of neutrino speedBorexinoNeutrinoupper limitParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSolar neutrinoDECAYSMagnetic momentNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesddc:530010306 general physicsNeutrino oscillationDETECTORELECTROMAGNETIC PROPERTIES010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemMAJORANA NEUTRINOS[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]electron: energy spectrum[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentexperimental resultsPhysical Review D
researchProduct

Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

2017

A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…

ultra high energy cosmic rays cosmic ray experimentsPhoton[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyHadronFluxultra high energy cosmic rays; cosmic ray experiments7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)energy: thresholdCosmic ray experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsphoton: productionconstraint: energyCOSMIC-RAYSAugerobservatoryContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenalongitudinalAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayultra high energy cosmic raysdark matterUltra high energy cosmic rays Cosmic ray experiments Astronomy and Astrophysics.Nuclear physics[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesultra high energy cosmic rays; cosmic ray experiments; Astronomy and Astrophysicscosmic radiation: UHEHigh Energy PhysicsCiencias ExactasPierre Auger ObservatorySPECTRUMhybridbackgrounddetector: surface010308 nuclear & particles physicsFísicaUltra high energy cosmic raysAstronomy and AstrophysicsASTROFÍSICAULTRA-HIGH ENERGYfluxExperimental High Energy PhysicsHigh Energy Physics::Experimentcosmic ray experimentshadron[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

Solar neutrino spectroscopy in Borexino

2018

International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.

neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoMetallicityNuclear physicsbackground: lowneutrino: spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillationSpectroscopyBorexinoPhysicsProton–proton chain reactionpp-chainp p: fusionprecision measurementDetector* Automatic Keywords *13. Climate actionsolar neutrinosspectralHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

2015

We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…

acceleration of particles; astroparticle physicsNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Upper LimitAstronomyCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFieldCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias Físicas01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareSettore FIS/05 - Astronomia e AstrofisicaObservatorySpectrum0103 physical sciencesacceleration of particles astroparticle physicsSurface Detector010303 astronomy & astrophysicsacceleration of particleAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleArrayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]astroparticle physicAstronomy and AstrophysicsASTROFÍSICANucleiSpace and Planetary Scienceastroparticle physicsExperimental High Energy Physicsacceleration of particles; astroparticle physics; Nuclear and High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCatalogSkyAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Simultaneous precision spectroscopy of pp, Be7, and pep solar neutrinos with Borexino Phase-II

2019

We present the simultaneous measurement of the interaction rates Rpp, RBe, Rpep of pp, Be7, and pep solar neutrinos performed with a global fit to the Borexino data in an extended energy range (0.19–2.93) MeV with particular attention to details of the analysis methods. This result was obtained by analyzing 1291.51 days of Borexino Phase-II data, collected after an extensive scintillator purification campaign. Using counts per day (cpd)/100 ton as unit, we find Rpp=134±10(stat)−10+6(sys), RBe=48.3±1.1(stat)−0.7+0.4(sys); and RpepHZ=2.43±0.36(stat)−0.22+0.15(sys) assuming the interaction rate RCNO of CNO-cycle (Carbon, Nitrogen, Oxigen) solar neutrinos according to the prediction of the high…

Physical Review
researchProduct

Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

2012

The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confiden…

FLUORESCENCE DETECTORAstronomyAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesCosmic RayAugerPierre Auger Observatory ; Monte Carlo simulations ; ultra-high energy cosmic raysHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Observatory0103 physical sciencesRECONSTRUCTIONFermilab010306 general physicsUHE Cosmic Rays Monte Carlo Energy SpectrumTRIGGERNuclear PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryPACS: 96.50.S 96.50.sb 96.50.sd 98.70.Sa010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger Observatory; Monte Carlo simulations; ultra-high energy cosmic raysPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryPROFILES[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Experimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

2016

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…

Ciencias FísicasAstronomyGeneral Physics and Astronomyultra-high energy cosmic raysAstrophysics01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)CODALEMAObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)Radio detectorTUNKA-REXSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsRadio TechniqueFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysicsradio emissionCIENCIAS NATURALES Y EXACTASRadio wave[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy (all)0103 physical sciencesextensive air showersHigh Energy Physicsultra-high energy cosmic rays extensive air showers radio emission010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger Observatory010308 nuclear & particles physicsRadiant energyFísicaLOFAR//purl.org/becyt/ford/1.3 [https]LOFARASTROFÍSICASIMULATIONSComputational physicsAstronomíaCOREASExperimental High Energy PhysicsARRAYEMISSION SIMULATIONS LOFAR.EMISSION
researchProduct

An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray …

2018

A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS …

Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Ciencias Físicascosmic radiation: densitygalaxies: starburstAstrophysics01 natural sciences//purl.org/becyt/ford/1 [https]methods: data analysis Supporting material: FITS fileUltra-high-energy cosmic raydata analysis [Methods]Anisotropycosmic radiation: model010303 astronomy & astrophysicscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsastroparticle physicastroparticle physics; cosmic rays; galaxies: active; galaxies: starburst; methods: data analysis Supporting material: FITS files; Astronomy and Astrophysics; Space and Planetary ScienceAugerobservatorygamma ray: emissiondata analysis Supporting material: FITS file [methods]astroparticle physicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusactive [Galaxies]Astrophysics::High Energy Astrophysical Phenomenagalaxies: activeData analysisFOS: Physical sciencesStarburstCosmic rayanisotropyAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias FísicasGLASTcosmic raysastroparticle physics; cosmic rays; galaxies: active; galaxies: starburst; methods: data analysis Supporting material: FITS files0103 physical sciencesHigh Energy Physicscosmic radiation: UHEAGNCosmic raysAstrophysics::Galaxy AstrophysicsZenithmethods: data analysis Supporting material: FITS filesPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsIsotropyFísicaAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Astronomy and Astrophysicmethods: data analysisGalaxyfluxstarburst [Galaxies]Space and Planetary ScienceExperimental High Energy PhysicsActive galaxiesgalaxyAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statistical
researchProduct

Calibration campaign of the Borexino detector for the search of sterile neutrinos with SOX

2020

Abstract The SOX (Short distance Oscillations with boreXino) experiment aims to investigate possible anomalous oscillatory behaviours in neutrinos, including the existence of sterile neutrinos, by exploiting the very low radioactive background of the Borexino detector. A calibration campaign is crucial to achieve a deeper understanding of the energy response and the spatial reconstruction accuracies of the detector. It will be performed with a suite of low-activity radioactive sources which will map the whole active volume, especially nearby the inner vessel. The calibration points at the border of the active zones will be extremely important to study the neutron detection efficiency. The c…

PhysicsHistorySterile neutrinoPhysics::Instrumentation and DetectorsCalibration (statistics)Active volumeDetectorComputer Science ApplicationsEducationShort distanceNeutron detectionNeutrinoBorexinoRemote sensingJournal of Physics: Conference Series
researchProduct

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

2014

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…

AstrofísicaPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyCiencias Físicasmuonshadronic interaction modelsAstrophysics01 natural sciencesHigh Energy Physics - ExperimentAuger//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Air showersProduction depthSURFACE DETECTOR ARRAY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh-Energy Cosmic Rays[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Pierre Auger ObservatoryObservableInstrumentation and Detectors (physics.ins-det)COSMIC-RAYSlongitudinal developmentCore (optical fiber)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayNuclear physicscosmic rays[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesextensive air showers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Física//purl.org/becyt/ford/1.3 [https]ASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomíaMODELExperimental High Energy PhysicsHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]muonic componentSYSTEM
researchProduct

A search for point sources of EeV photons

2014

Measurements of air showersmade using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from −85º to +20º, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of −2, is 0.06 eV cm−2 s−1, and no celestial direction exceeds 0.25 eV …

Astrofísica[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPoint sourcemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstronomyEnergy fluxFOS: Physical sciencesCosmic rayAstrophysics7. Clean energycosmic raysCiencias Exactasmedia_commonPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral index[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsRadiación cósmicamethods: data analysisGalaxy13. Climate actionSpace and Planetary ScienceSkyastroparticle physicsExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

2014

The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolAstronomyObservatoriesAerosol concentrationAir pollution010501 environmental sciencesAtmospheric sciencesmedicine.disease_causeAerosols Atmospheric aerosols Augers Cosmic rays Observatories; Aerosol concentration Aerosol optical depths Air mass Atmospheric effects GDAS HYSPLIT Pierre Auger observatory Ultra high-energy cosmic rays; Meteorology; aerosol property air mass concentration (composition) optical depth trajectory urban area urban atmosphere; Argentina01 natural sciencesoptical depthObservatory11. Sustainabilityddc:550MeteorologiaAugersmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsconcentration (composition)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]urban atmosphereAtmospheric effectsGDASAtmospheric aerosolscosmic ray; aerosol; air masses; atmospheric effectPhysics - Atmospheric and Oceanic PhysicstrajectoryClimatologyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHYSPLITAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPollutionaerosol property[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectatmospheric effectArgentinaFOS: Physical sciencesHYSPLITAtmósferaAtmosphereMeteorologycosmic raysmedicineAerosol optical depthsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasAir mass0105 earth and related environmental sciencesAerosols[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Pierre Auger ObservatoryFísicaASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Aerosol13. Climate actionExperimental High Energy PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)Pierre Auger observatoryAir massair massesUltra high-energy cosmic raysurban area
researchProduct

Reconstruction of inclined air showers detected with the Pierre Auger Observatory

2014

We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an…

AstrofísicaAstronomyCiencias Físicas01 natural sciencesultra high energy cosmic rayHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]ENERGYHigh Energy Physics - Experiment (hep-ex)EXPERIMENTS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HIGHPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryCascadeComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASNormalization (statistics)[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]COSMICAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesEnergy spectrum010306 general physicsULTRAZenithShower reconstructionPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Ultra-high energy cosmic raysRAYSComputational physicsAstronomíaInclined extensive air showersExperimental High Energy Physicscosmic ray experiments[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Energy (signal processing)Journal of Cosmology and Astroparticle Physics
researchProduct

Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

2016

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…

Physics - Instrumentation and DetectorsAutomatic dependent surveillance-broadcastComputer scienceCiencias FísicasAstronomyDetector alignment and calibration methods (lasers sources particle-beams)Calibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors01 natural sciencesTiming detectorsSynchronizationHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Sine wave[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]InstrumentationMathematical PhysicsTransmitterDetectorSettore FIS/01 - Fisica Sperimentaleparticle-beams)Instrumentation and Detectors (physics.ins-det)Pattern recognition cluster finding calibration and fitting methodGlobal Positioning SystemComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCIENCIAS NATURALES Y EXACTASsourcesReal-time computingFOS: Physical sciencesCalibration and fitting methodClustersPattern recognition0103 physical sciencesCalibrationHigh Energy Physics010306 general physicsCiencias ExactasCalibration and fitting methods010308 nuclear & particles physicsbusiness.industryCluster findingFísicaAstroparticles//purl.org/becyt/ford/1.3 [https]PhaserAstronomíaDetector alignment and calibration methods (lasersTiming detectorPierre AugerExperimental High Energy PhysicsRECONHECIMENTO DE PADRÕESCalibration and fitting methods; Cluster finding; Detector alignment and calibration methods (lasers sources particle-beams); Pattern recognition; Timing detectors; Instrumentation; Mathematical PhysicsbusinessJournal of Instrumentation
researchProduct

Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

2013

We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesultra-high energy cosmic raysCosmic rayAstrophysicsultra high energy cosmic raysAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAugerNUMBERObservatoryCosmic ray experiments0103 physical sciencesultra-high energy cosmic rayUltra-high-energy cosmic ray010303 astronomy & astrophysicsDETECTORLuminosity functionPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FÍSICA DE PARTÍCULASRange (particle radiation)SPECTRUMCosmologia010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsUltra high energy cosmic raysAstronomíaLUMINOSITY FUNCTIONMagnitude (astronomy)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiaFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysCIENCIAS NATURALES Y EXACTAS
researchProduct