0000000000480501

AUTHOR

J. Stein

The SMILETRAP (Stockholm-Mainz-Ion-LEvitation-TRAP) facility

Described in this paper is an experimental facility which measures atomic masses by using multiply charged ions from an electron beam ion source. The ions are injected into a Penning trap and the cyclotron frequencies measured. A precision of 2×10−9 has been reached using highly charged carbon, nitrogen, oxygen and neon.

research product

A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

Abstract A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 × 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator.

research product

SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study

Abstract Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18–49, 50–69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in su…

research product

SMILETRAP — Atomic mass measurements with ppb accuracy by using highly charged ions

In the SMILETRAP facility externally produced highly charged ions are captured in a Penning trap and utilized for high precision measurements of atomic masses. Accuracy tests on a ppb level have been performed, using highly charged carbon, oxygen and neon ions. In all cases hydrogen ions served as a reference for the calibration and monitoring of the magnetic field in the trap. Deviations smaller than 3 ppb from the expected results were found in mass measurements of the16O and20Ne atomic masses. The proton atomic mass, determined from the reference measurements on hydrogen ions, is in good agreement with the accepted value [1]. A direct mass measurement on the86Kr-isotope, using trapped86K…

research product

Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people

Published August 23, 2022 The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 part…

research product

Accuracy tests of atomic mass measurements in a penning trap using externally produced highly charged ions

The SMILETRAP experimental set-up, a Penning trap mass spectrometer for highly charged ions, is described. Capture and observation of cyclotron frequencies of externally produced highly charged ions is demonstrated. Mass measurements utilizing different charge states and species to verify the consistency of the measurements are presented. A relative uncertainty <3 10−9 is attained in comparisons between highly charged 12C, 14N, 16O, 20Ne and singly charged H, H2 and H3 ions. The current limitations and future developments are discussed.

research product

über den Einflu\ der Wärmebehandlung auf die Eiwei\stoffe der Milch, mit besonderer Berücksichtigung der bei der Uperisation® angewandten Thermik

Untersuchungen uber die N-Verteilung in flussiger Rohmagermilch, pasteurisierter, sterilisierter und uperisierter Magermilch, die jeweils aus derselben Ausgangsmilch stammten, ergaben, da\ durch die Hitzeeinwirkung eine Zunahme des bei pH 4,6 fallbaren Caseins eintritt, die bei der sterilisierten Milch am starksten war. Dieser Anstieg war proportional der Abnahme an Molkenprotein, was auf eine Komplexbildung zwischen diesen Eiwei\stoffen zuruckzufuhren ist. Nach Lyophilisierung und anschlie\ender Rekonstitution der Milch ergaben sich analoge Werte. Bei der elektronen-optischen Untersuchung der Caseinpartikelchen zeigte sich mit steigender thermischer Belastung eine Umgestaltung in der Casei…

research product

The SMILETRAP facility

The SMILETRAP experimental set-up, a Penning trap mass spectrometer for highly charged ions, is described. Capture and observation of cyclotron frequencies of externally produced highly charged ions, rapid interchange of investigated and reference ions and measurements of the rotational kinetic energies are demonstrated. Mass measurements utilizing different charge states and species to verify the consistency of the measurements are presented. A relative uncertainty of about 10−9 is attained in comparisons between highly charged carbon, nitrogen, oxygen, neon and the singly charged hydrogen molecule.

research product