0000000000485883
AUTHOR
Michael Schaum
Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans
Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed f…
Cortical network mechanisms of response inhibition
SummaryBoth the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA) are crucial for successful response inhibition. However, the particular functional roles of those two regions have been controversially debated for more than a decade now. It is unclear whether the rIFG directly initiates stopping or serves an attentional function, whereas the stopping is triggered by the pre-SMA. The current multimodal MEG/fMRI study sought to clarify the role and temporal activation order of both regions in response inhibition using a selective stopping task. This task dissociates inhibitory from attentional processes. Our results reliably reveal a temporal precedence of rIF…
Author response: Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans
Surprise: Unexpected Action Execution and Unexpected Inhibition Recruit the Same Fronto-Basal-Ganglia Network.
Unexpected and thus surprising events are omnipresent and oftentimes require adaptive behavior such as unexpected inhibition or unexpected action. The current theory of unexpected events suggests that such unexpected events just like global stopping recruit a fronto-basal-ganglia network. A global suppressive effect impacting ongoing motor responses and cognition is specifically attributed to the subthalamic nucleus (STN). Previous studies either used separate tasks or presented unexpected, task-unrelated stimuli during response inhibition tasks to relate the neural signature of unexpected events to that of stopping. Here, we aimed to test these predictions using a within task design with i…