0000000000489835
AUTHOR
Jonder Morais
Photoemission from Pt(111)-(hex)-Rb and Pt(111)-(4×1)-RbO using polarised synchrotron radiation
Abstract In various experiments it has been demonstrated that the circular dichroism in the angular distribution of photoelectrons (CDAD) is not only observed from oriented initial states (aligned adsorbed molecules or magnetised samples), but also arises as a consequence of the scattering of photoelectrons from the surrounding atoms in a solid or an adsorbate. In this work we will show first measurements performed at the SGM beamline of the Brazilian Synchrotron Light Source (LNLS) on a (4×1) superstructure of 1 ML RbO adsorbed on Pt(111). Measurements from the 4s core levels of Rb adsorbed at Pt(111) were also performed at the PM-III beamline at BESSY. The measured variations of the inten…
Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids
Abstract The reduction of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) dissolved in 1-n-butyl-3-methyl tetrafluoroborate, hexafluorophosphate and trifluoromethane sulphonate ionic liquids in the presence of 1-decene by molecular hydrogen produces Ir(0) nanoparticles. The formation of these nanoparticles follows the two-step [A → B, A + B → 2B ( k 1 , k 2 )] autocatalytic mechanism. The same mean diameter values of around 2–3 nm were estimated from in situ TEM and SAXS analyses of the Ir(0) nanoparticles dispersed in the ionic liquids and by XRD of the isolated material. XPS and EXAFS analyses clearly show the interactions of the ionic liquid with the metal surface demonstrating the formation of …
Charge transfer effects on the chemical reactivity of PdxCu1−xnanoalloys
This work reports on the synthesis and characterization of PdxCu1-x (x = 0.7, 0.5 and 0.3) nanoalloys obtained via an eco-friendly chemical reduction method based on ascorbic acid and trisodium citrate. The average size of the quasi-spherical nanoparticles (NPs) obtained by this method was about 4 nm, as observed by TEM. The colloids containing different NPs were then supported on carbon in order to produce powder samples (PdxCu1-x/C) whose electronic and structural properties were probed by different techniques. XRD analysis indicated the formation of crystalline PdCu alloys with a nanoscaled crystallite size. Core-level XPS results provided a fingerprint of a charge transfer process betwe…
AN EXPERIMENTAL PROOF OF THE BACK-SCATTERING MODEL FOR DICHROIC EFFECTS IN VUV PHOTOEMISSION
The energy dependence of the circular dichroism in the angular distribution of photoelectrons (CDAD) was investigated from the shallow Cs 5p core levels. Cesium was prepared in a hexagonal ordered monolayer on W(110). The results are mainly influenced by scattering of the photoelectrons within the adlayer. At low energies, the behavior observed is described by means of a model that treats only the back-scattering of photoelectrons at the potential step between the adlayer and the substrate. It leads to a simple method determining the position of the monolayer with respect to the substrate. In this approach, the back-scattering model is matched with the measured energy dependence of the CDA…
Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe
This work reports on the electronic and crystalline structure and the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co${}_{2}$MnGe. The crystalline structure was examined in detail by extended x-ray absorption fine-structure spectroscopy and anomalous x-ray diffraction. The compound exhibits a well-ordered $L{2}_{1}$ structure as is typical for Heusler compounds with 2:1:1 stoichiometry. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab initiocalculations. Transport measurements and hard x-ray photoelectron spectroscopy were performed t…
Structural, electronic, and magnetic properties of tetragonalMn3−xGa: Experiments and first-principles calculations
This work reports on the electronic, magnetic, and structural properties of the binary intermetallic compounds ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$. The tetragonal ${\mathrm{DO}}_{22}$ phase of the ${\mathrm{Mn}}_{3\ensuremath{-}x}\mathrm{Ga}$ series, with $x$ varying from 0 to 1.0 in steps of $x=0.1$, was successfully synthesized and investigated. It was found that all these materials are hard magnetic, with energy products ranging from $10.1\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensuremath{-}3}$ for low Mn content $(x\ensuremath{\rightarrow}1)$ to $61.6\phantom{\rule{0.3em}{0ex}}\mathrm{kJ}\phantom{\rule{0.2em}{0ex}}{\mathrm{m}}^{\ensurema…
Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new materials with high spin polarization. It is based on two semi-empirical models. Firstly, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for Co$_2$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, Co$_2$FeSi was revisited. The compound was investigated in detail concerning its geometrical and magnetic structure by m…
Electron-TOF-analyser for complete momentum analysis in photoemission from surfaces
Abstract We present a new method for momentum-selective imaging by means of a time-of-flight (TOF) technique. The instrument employs a time- and space-resolving delayline detector in combination with a parabolic electrostatic field and a drift space. We use this kind of spectrometer, to raise the efficiency of experiments, which are total momentum resolved. The main difference to conventional photoemission experiments using a rotatable spectrometer is the simultaneous detection of all emitted photoelectrons. In addition to this feature, the angular distribution should be directly visible, to observe solid state symmetries. In order to facilitate these requirements, we use a delayline detect…
Unraveling the Formation of Core−Shell Structures in Nanoparticles by S-XPS
The combination of the surface sensitivity of X-ray photoelectron spectroscopy (XPS) with the high flux and variable photon energy excitation of Synchrotron radiation (S-XPS) is used to probe the atomic distribution of bimetallic nanoparticles. Based on the energy dependence of the photoemission differential cross section of core level photoelectrons, we propose a methodology to monitor the formation and to evaluate sizes of the core−shell structure. We have successfully applied it to unveil the mechanism involved in the atomic rearrangement of thermally treated Pt0.7Pd0.3 nanoparticles.
Angular and temperature dependence of the magnetic circular dichroism in4dcore-level photoemission from Gd(0001)
We present experimental and theoretical results for the angular and temperature dependence of magnetic circular dichroism in Gd $4d$ core-level photoelectron emission from a Gd(0001) surface in both normal and off-normal directions and with azimuthal variation. Two theoretical approaches are used to model this data: a single electron theory with full multiple scattering of the outgoing photoelectron and a full-relativistic many-electron theory with single scattering only. Thermal effects due to atomic vibrations and the excitation of initial-state multiplets are also included. For normal emission, we find smooth free-atom-like angular variations in emission intensity, while for off-normal e…
Charakterisierung von dotierten Heusler-Verbindungen: Co2Cr1−xFexAl
EXAFS-Messungen an dotierten Heusler-Verbindungen
Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds
Abstract The structural properties of (Ti,Zr,Hf)CoSb thermoelectric Half-Heusler compounds were investigated by synchrotron radiation based techniques. The short-range order, in particular the environment of the Co atoms, was studied by extended X-Ray absorption fine structure spectroscopy and the long range order by powder X-Ray diffraction. Structural models were obtained for the single phase materials TiCoSb0.85Sn0.15, ZrCoSb0.85Sn0.15, and HfCoSb0.85Sn0.15. These models were transferred for the phase-separated material Ti0.5Hf0.5CoSb0.85Sn0.15. As a result, proving that each Half-Heusler phase was well ordered, apart from the intermixing of Ti and Hf on its designated crystallographic l…
Selective Hydrogenation of 1,3-Butadiene to 1-Butene by Pd(0) Nanoparticles Embedded in Imidazolium Ionic Liquids
The reduction of Pd(acac)2 (acac=acetylacetonate), dissolved in 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMI⋅PF6) or tetrafluoroborate (BMI⋅BF4) ionic liquids, by molecular hydrogen (4 atm) at 75 °C affords stable, nanoscale Pd(0) particles with sizes of 4.9±0.8 nm. Inasmuch as 1,3-butadiene is at least four times more soluble in the BMI⋅BF4 than butenes, the selective partial hydrogenation could be performed by Pd(0) nanoparticles embedded in the ionic liquid. Thus, the isolated nanoparticles promote the hydrogenation of 1,3-butadiene to butenes under solventless or multiphase conditions. Selectivities up to 97% in butenes were observed in the hydrogenation of 1,3-butadiene by Pd…
Pd–M/C (M = Pd, Cu, Pt) Electrocatalysts for Oxygen Reduction Reaction in Alkaline Medium: Correlating the Electronic Structure with Activity
The increasing global needs for clean and renewable energy have fostered the design of new and highly efficient materials for fuel cells applications. In this work, Pd-M (M = Pd, Cu, Pt) and Pt nanoparticles were prepared by a green synthesis method. The carbon-supported nanoparticles were evaluated as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium. A comprehensive electronic and structural characterization of these materials was achieved using X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Their electrochemical properties were investigated by cyclic voltammetry, while the…
Geometric, electronic, and magnetic structure ofCo2FeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for materials with high spin polarization. It is based on two semiempirical models. First, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for ${\mathrm{Co}}_{2}$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, ${\mathrm{Co}}_{2}\mathrm{FeSi}$ was revisited. The compound was investigated in detail concerning its geometrical…
Spin polarisation and dichroism in ARUPS from thin rare earth films
Abstract In the present study, spin polarisation and dichroism were investigated in angular resolved VUV photoemission ARUPS from magnetised as well as paramagnetic rare earth surfaces. Thin Gd(0001) films were prepared epitaxially on W(110). The photoelectrons were excited by polarised synchrotron radiation from the BESSY I synchrotron radiation source. A SPLEED detector attached to an electron spectrometer mounted on a single axis goniometer was used for angular resolved spin analysis. The main part of this work focused on the characteristic surface state of Gd(0001) which shows a splitting, as previously observed by linear magnetic dichroism and spin polarised photoemission. The spin ana…
Structural properties of the quaternary Heusler compound Co2 Cr1−x Fex Al
Abstract The structural and chemical properties of the quaternary Heusler compound Co2 Cr1−x Fex Al were investigated comparing powder and bulk samples. The long range order was determined by means of X-ray diffraction, while the site specific (short range) order was proved by the extended X-ray absorption fine structure method (EXAFS). The chemical composition was analysed by means of X-ray photo emission spectroscopy (XPS) combined with Auger electron spectroscopy (AES) depth profiling. The results from these methods are compared to get a detailed idea about the differences between surface and bulk properties and appearance of disorder in such alloys.
Probing the chemical interaction between iridium nanoparticles and ionic liquid by XPS analysis
Abstract In situ X-ray photoelectron spectroscopy analysis of Ir(0) nanoparticles (1.6 ± 0.3 nm) dispersed in imidazolium ionic liquid (EMI.EtSO4) shows evidences of the effective interaction between the metallic clusters and the surrounding liquid. By monitoring the C 1s signal of the ionic liquid one observes a change of the binding energy in one of its components (C2) when in the presence of Ir nanoparticles. This result was corroborated by isotope labeling experiments.
Influence of nanoscale order–disorder transitions on the magnetic properties of Heusler compounds for spintronics
Modifications in nanoscale chemical order are used to tune the magnetic properties, namely T-C, of Co2FeSixAl1-x (0 < x < 1). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with Z-contrast reveals nanoscale regions of L2(1) order within a B2 matrix in the off-stoichiometry samples. Perhaps surprisingly, the latter, more chemically disordered structure, exhibits a higher T-C. Upon annealing, the off-stoichiometry samples become more homogeneous with the fraction of L2(1) order decreasing. The short-range order was also investigated using X-ray absorption fine structure (XAFS) measurements at the Co and Fe K edges. Since the local atomic environments of C…
Structural properties of the quaternary Heusler alloy Co2Cr1−xFexAl
The quarternary substitutional series Co2Cr1?xFexAl was investigated by means of surface and bulk sensitive techniques in order to exploit its structural and compositional properties. Both bulk and powder samples of the alloy series were investigated to obtain specific information about this material.The long range order was determined by means of x-ray diffraction and neutron diffraction, while the site specific (short range) order was proved by extended x-ray absorption fine structure spectroscopy. The magnetic structure was investigated by M?ssbauer spectroscopy in transmission and scattering modes in order to compare and separate powder and bulk properties. The chemical composition was …