0000000000490271
AUTHOR
Caterina Alfano
Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential…
Recombinant mussel protein Pvfp-5β: A potential tissue bioadhesive
During their lifecycle, many marine organisms rely on natural adhesives to attach to wet surfaces for movement and self-defence in aqueous tidal environments. Adhesive proteins from mussels are biocompatible and elicit only minimal immune responses in humans. Therefore these proteins have received increased attention for their potential applications in medicine, biomaterials and biotechnology. The Asian green mussel Perna viridis secretes several byssal plaque proteins, molecules that help anchor the mussel to surfaces. Among these proteins, protein-5β (Pvfp-5β) initiates interactions with the substrate, displacing interfacial water molecules before binding to the surface. Here, we establis…
Oxidation effects in antiaggregogenic properties of Epigallocatechingallate
Epigallocatechin-gallate (EGCG), the most abundant flavonoid in green tea, has been extensively studied for its potential in the treatment of amyloid related disorders. This molecule was found to modulate abnormal protein self-assembly, reducing resulting cellular toxicity. EGCG is known to suppress or to slow down the aggregation processes of several proteins, thus supporting the idea that general mechanisms regulate its anti-aggregogenic effects and, interestingly, in the oxidised form it demonstrated an higher efficiency in reducing protein aggregation with respect to intact molecule. We here investigate the effects of intact and oxidized EGCG the thermal aggregation pathway of Bovine Se…
"Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms.
The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and the volume of the ink, and reconfiguring the deposition features in due course. Similarly to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review articl…
Investigation on a MMACHC mutant from cblC disease: The c.394C>T variant
The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Althou…
Solution structure of recombinant Pvfp-5β reveals insights into mussel adhesion
Solution structure of byssal plaque protein Pvfp-5 beta secreted by the Asian green mussel Perna viridis gives molecular insight into mussel adhesion on wet surfaces.Some marine organisms can resist to aqueous tidal environments and adhere tightly on wet surface. This behavior has raised increasing attention for potential applications in medicine, biomaterials, and tissue engineering. In mussels, adhesive forces to the rock are the resultant of proteinic fibrous formations called byssus. We present the solution structure of Pvfp-5 beta, one of the three byssal plaque proteins secreted by the Asian green mussel Perna viridis, and the component responsible for initiating interactions with the…
Electrostatics regulate Epigallocatechin-Gallate effects on Bovine Serum Albumin aggregation
Protein aggregation processes are complex phenomena often involved in the etiology of several pathologies. It is now assessed that all proteins, in suitable conditions, may undergo supramolecular assembly. Aggregation pathways are known to be controlled by solution conditions which regulate protein-protein and protein-solvent interactions affecting binding mechanisms, morphology and inherent toxicity of the aggregate species. In this context, the presence of small molecules was indicated as a promising method to modulate protein-protein interactions reducing pathogenic aggregation. In the light of the idea that common mechanisms regulate anti-aggregogenic properties of small molecules, we h…