0000000000490391

AUTHOR

Martin Hengesbach

showing 7 related works from this author

A Post-Labeling Approach for the Characterization and Quantification of RNA Modifications Based on Site-Directed Cleavage by DNAzymes

2011

Deoxyribozymes or DNAzymes are small DNA molecules with catalytic activity originating from in vitro selection experiments. Variants of the two most popular DNAzymes with RNase activity, the 10-23 DNAzyme and the 8-17 DNAzyme, promote efficient in vitro cleavage of the phosphodiester bond in at least 11 out of 16 possible dinucleotide permutations. Judicious choice of the sequences flanking the active core of the DNAzymes permits to direct cleavage activity with high sequence specificity. Here, the harnessing of these features for the analysis of RNA nucleotide modifications by a post-labeling approach is described in detail. DNAzymes are designed such that RNase cleavage is directed precis…

chemistry.chemical_classificationAnalytechemistry.chemical_compoundchemistryBiochemistryRNase PPhosphodiester bondDeoxyribozymeRNANucleotideCleavage (embryo)DNA
researchProduct

Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy

2020

AbstractThe current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5′ end, the ribosomal frameshift segment and t…

Untranslated region0303 health sciencesAcademicSubjects/SCI00010Base pairNAR Breakthrough ArticleRNANuclear magnetic resonance spectroscopyComputational biologyBiology010402 general chemistry01 natural sciencesGenomeFootprintingRibosomal frameshift0104 chemical sciences03 medical and health sciencesGeneticsProtein secondary structure030304 developmental biologyNucleic Acids Research
researchProduct

RNA Ligation

2014

0303 health sciences03 medical and health sciencesChemistry030302 biochemistry & molecular biologyRNALigationMolecular biology030304 developmental biology
researchProduct

Single-molecule FRET studies of counterion effects on the free energy landscape of human mitochondrial lysine tRNA.

2011

The folding energy landscape of RNA is greatly affected by interactions between the RNA and counterions that neutralize the backbone negative charges and may also participate in tertiary contacts. Valence, size, coordination number, and electron shell structure can all contribute to the energetic stabilization of specific RNA conformations. Using single-molecule fluorescence resonance energy transfer (smFRET), we have examined the folding properties of the RNA transcript of human mitochondrial tRNA(Lys), which possesses two different folded states in addition to the unfolded one under conditions of thermodynamic equilibrium. We have quantitatively analyzed the degree of RNA tertiary structu…

Quantitative Biology::BiomoleculesChemistryNucleic acid tertiary structureRNA MitochondrialRNA StabilityRNA ConformationRNAEnergy landscapeSingle-molecule FRETQuantitative Biology::GenomicsBiochemistryProtein tertiary structureCrystallographyFörster resonance energy transferCationsTransfer RNAFluorescence Resonance Energy TransferHumansNucleic Acid ConformationRNARNA Transfer LysThermodynamicsRNA MessengerBiochemistry
researchProduct

Single-Molecule FRET Reveals a Cooperative Effect of Two Methyl Group Modifications in the Folding of Human Mitochondrial tRNALys

2011

Summary Using a combination of advanced RNA synthesis techniques and single molecule spectroscopy, the deconvolution of individual contributions of posttranscriptional modifications to the overall folding and stabilization of human mitochondrial tRNA Lys is described. An unexpected destabilizing effect of two pseudouridines on the native tRNA folding was evidenced. Furthermore, the presence of m 2 G10 alone does not facilitate the folding of tRNA Lys , but a stabilization of the biologically functional cloverleaf shape in conjunction with the principal stabilizing component m 1 A9 exceeds the contribution of m 1 A alone. This constitutes an unprecedented cooperative effect of two nucleotide…

Models MolecularRNA StabilityMolecular Sequence DataClinical BiochemistryContext (language use)BiologyBiochemistryOrganophosphorus CompoundsDrug DiscoveryFluorescence Resonance Energy TransferHumansNucleotideMagnesiumTRNA foldingColoring AgentsMolecular Biologychemistry.chemical_classificationPharmacologyBase SequenceOligonucleotideRNAGeneral MedicineSingle-molecule FRETMitochondriaFolding (chemistry)chemistryBiochemistryTransfer RNABiophysicsNucleic Acid ConformationRNA Transfer LysMolecular MedicinePseudouridineChemistry & Biology
researchProduct

Correction to ‘Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy’

2021

The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-un…

Models Molecular2019-20 coronavirus outbreakMagnetic Resonance SpectroscopyCoronavirus disease 2019 (COVID-19)AcademicSubjects/SCI00010Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Genome ViralBiology03 medical and health sciencesGeneticsHumans3' Untranslated RegionsPandemicsProtein secondary structure030304 developmental biology0303 health sciencesBase SequenceSARS-CoV-2030302 biochemistry & molecular biologyCOVID-19Frameshifting RibosomalRNANuclear magnetic resonance spectroscopyVirologyNucleic Acid ConformationRNA ViralCorrigendumNucleic Acids Research
researchProduct

Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

2021

The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential…

Life sciences; biologySARS-COV-2; COVID-19; protein production; structural biology NMR[SDV.BIO]Life Sciences [q-bio]/BiotechnologyBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryAccessory proteinsNMR spectroscopyddc:570[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Molecular Biosciencesddc:610Nonstructural proteinsMolecular BiologyOriginal Research[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]SARS-CoV-2Intrinsically disordered regionnonstructural proteinsCOVID-19structural proteinsCell-free protein synthesisintrinsically disordered regioncell-free protein synthesisaccessory proteins[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyStructural proteins
researchProduct