0000000000512976

AUTHOR

Marta Liras

0000-0002-1724-1586

Thin Amphiphilic Polymer-Capped Upconversion Nanoparticles: Enhanced Emission and Thermoresponsive Properties

Upconversion nanoparticles (ß-NaYF4:Er3+, Yb3+, UCNPs) were capped with a thin polymer shell by replacing the oleate ligand of hydrophobic UCNPs by multidentate thiolate-grafting of P(MEO2MA-co-SEMA) copolymers. The presence of the 2-(2-methoxyethoxy)ethyl side chains of MEO2MA extending out of the nanohybrid made them water-dispersible. The UCNP@P(MEO2MA-co-SEMA) nanohybrids exhibited an enhanced emission by up to a factor of 10, as compared with that of their hydrophobic precursor in dichloromethane and even in water (a factor of 2). Moreover, their thermoresponsiveness was modulated by the pH; this is consistent with the presence of some thiol groups at the nanohybrid periphery. Remarkab…

research product

NIR excitation of upconversion nanohybrids containing a surface grafted Bodipy induces oxygen-mediated cancer cell death

We report the preparation of water-dispersible, ca. 30 nm-sized nanohybrids containing NaYF4:Er3+, Yb3+ up-conversion nanoparticles (UCNPs), capped with a polyethylene glycol (PEG) derivative and highly loaded with a singlet oxygen photosensitizer, specifically a diiodo-substituted Bodipy (IBDP). The photosensitizer, bearing a carboxylic group, was anchored to the UCNP surface and, at the same time, embedded in the PEG capping; the combined action of the UCNP surface and PEG facilitated the loading for an effective energy transfer and, additionally, avoided photosensitizer leaching from the nanohybrid (UCNP-IBDP@PEG). The effectiveness of the nanohybrids in generating singlet oxygen after n…

research product

Upconversion nanoparticles with a strong acid-resistant capping

Water-dispersible upconversion nanoparticles (β-NaYF:Yb,Er, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the d…

research product

Energy transfer in diiodoBodipy-grafted upconversion nanohybrids.

Steady-state and time-resolved emission studies on nanohybrids consisting of NaYF4:Yb,Er and a diiodo-substituted Bodipy (UCNP-IBDP) show that the Yb(3+) metastable state, formed after absorption of a near-infrared (NIR) photon, can decay via two competitive energy transfer processes: sensitization of IBDP after absorption of a second NIR photon and population of Er(3+) excited states.

research product