Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes.
Here we show the fabrication of the Luminometric Sub-nanoliter Droplet-to-droplet Array (LUMDA chip) by inkjet printing. The chip is easy to be implemented and allows for a multiplexed multi-step biochemical assay in sub-nanoliter liquid spots. This concept is here applied to the integral membrane enzyme CYP3A4, i.e. the most relevant enzymatic target for phase I drug metabolism, and to some structurally-related inhibitors.
Optimization of fluorescence enhancement for silicon-based microarrays
An optical technique for the enhancement of fluorescence detection sensitivity on planar samples is presented. Such a technique is based on the simultaneous optimization of excitation and light collection by properly combining interference and reflectance from the sample holder. Comparative tests have been performed in microarray applications, by evaluating the proposed solution against commercial glass-based devices, using popular labeling dyes, such as Cy3 and Cy5. The proposed technique is implemented on a substrate built with standard silicon technology and is therefore well suited for integrated micro total analysis systems (microTAS) applications.