0000000000520111

AUTHOR

Per-arne Andersen

showing 21 related works from this author

Increasing sample efficiency in deep reinforcement learning using generative environment modelling

2020

Artificial neural networkComputer sciencebusiness.industrySample (statistics)Machine learningcomputer.software_genreTheoretical Computer ScienceComputational Theory and MathematicsArtificial IntelligenceControl and Systems EngineeringReinforcement learningMarkov decision processArtificial intelligencebusinesscomputerVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Generative grammar
researchProduct

MapAI: Precision in BuildingSegmentation

2022

MapAI: Precision in Building Segmentation is a competition arranged with the Norwegian Artificial Intelligence Research Consortium (NORA) in collaboration with Centre for Artificial Intelligence Research at the University of Agder (CAIR), the Norwegian Mapping Authority, AI:Hub, Norkart, and the Danish Agency for Data Supply and Infrastructure. The competition will be held in the fall of 2022. It will be concluded at the Northern Lights Deep Learning conference focusing on the segmentation of buildings using aerial images and laser data. We propose two different tasks to segment buildings, where the first task can only utilize aerial images, while the second must use laser data (LiDAR) with…

VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct

Towards safe reinforcement-learning in industrial grid-warehousing

2020

Abstract Reinforcement learning has shown to be profoundly successful at learning optimal policies for simulated environments using distributed training with extensive compute capacity. Model-free reinforcement learning uses the notion of trial and error, where the error is a vital part of learning the agent to behave optimally. In mission-critical, real-world environments, there is little tolerance for failure and can cause damaging effects on humans and equipment. In these environments, current state-of-the-art reinforcement learning approaches are not sufficient to learn optimal control policies safely. On the other hand, model-based reinforcement learning tries to encode environment tra…

Information Systems and ManagementComputer sciencemedia_common.quotation_subjectSample (statistics)02 engineering and technologyMachine learningcomputer.software_genreTheoretical Computer ScienceArtificial Intelligence0202 electrical engineering electronic engineering information engineeringReinforcement learningVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550media_commonbusiness.industry05 social sciences050301 educationGridOptimal controlAutoencoderComputer Science ApplicationsAction (philosophy)Control and Systems EngineeringCuriosity020201 artificial intelligence & image processingArtificial intelligencebusiness0503 educationcomputerSoftwareInformation Sciences
researchProduct

Towards a Deep Reinforcement Learning Approach for Tower Line Wars

2017

There have been numerous breakthroughs with reinforcement learning in the recent years, perhaps most notably on Deep Reinforcement Learning successfully playing and winning relatively advanced computer games. There is undoubtedly an anticipation that Deep Reinforcement Learning will play a major role when the first AI masters the complicated game plays needed to beat a professional Real-Time Strategy game player. For this to be possible, there needs to be a game environment that targets and fosters AI research, and specifically Deep Reinforcement Learning. Some game environments already exist, however, these are either overly simplistic such as Atari 2600 or complex such as Starcraft II fro…

EntertainmentCognitive sciencebusiness.industryComputer scienceDeep learningComputingMilieux_PERSONALCOMPUTINGQ-learningReinforcement learningArtificial intelligencebusinessGame player
researchProduct

The Dreaming Variational Autoencoder for Reinforcement Learning Environments

2018

Reinforcement learning has shown great potential in generalizing over raw sensory data using only a single neural network for value optimization. There are several challenges in the current state-of-the-art reinforcement learning algorithms that prevent them from converging towards the global optima. It is likely that the solution to these problems lies in short- and long-term planning, exploration and memory management for reinforcement learning algorithms. Games are often used to benchmark reinforcement learning algorithms as they provide a flexible, reproducible, and easy to control environment. Regardless, few games feature a state-space where results in exploration, memory, and plannin…

Memory managementArtificial neural networkComputer sciencebusiness.industryBenchmark (computing)Feature (machine learning)Reinforcement learningArtificial intelligenceMarkov decision processbusinessAutoencoderGenerative grammar
researchProduct

Development of a Novel Object Detection System Based on Synthetic Data Generated from Unreal Game Engine

2022

This paper presents a novel approach to training a real-world object detection system based on synthetic data utilizing state-of-the-art technologies. Training an object detection system can be challenging and time-consuming as machine learning requires substantial volumes of training data with associated metadata. Synthetic data can solve this by providing unlimited desired training data with automatic generation. However, the main challenge is creating a balanced dataset that closes the reality gap and generalizes well when deployed in the real world. A state-of-the-art game engine, Unreal Engine 4, was used to approach the challenge of generating a photorealistic dataset for deep learnin…

Fluid Flow and Transfer ProcessesVDP::Teknologi: 500Process Chemistry and TechnologyGeneral Engineeringcomputer vision; deep learning; domain randomization; object detection; NDDS; PyTorch; sim2real; synthetic data; Unreal Engine; YOLOv5General Materials ScienceVDP::Matematikk og Naturvitenskap: 400InstrumentationComputer Science ApplicationsApplied Sciences
researchProduct

CostNet: An End-to-End Framework for Goal-Directed Reinforcement Learning

2020

Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment. The learning typically happens through trial and error using explorative methods, such as \(\epsilon \)-greedy. There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines. Model-based RL learns a model of the environment for learning the policy while model-free approaches are fully explorative and exploitative without considering the underlying environment dynamics. Model-free RL works conceptually well in simulated environments, and empirical evidence suggests that trial and error lead to a near-opti…

Artificial neural networkEnd-to-end principlebusiness.industryComputer scienceReinforcement learningSample (statistics)Markov decision processArtificial intelligenceEmpirical evidenceTrial and errorbusinessFeature learning
researchProduct

Safer Reinforcement Learning for Agents in Industrial Grid-Warehousing

2020

In mission-critical, real-world environments, there is typically a low threshold for failure, which makes interaction with learning algorithms particularly challenging. Here, current state-of-the-art reinforcement learning algorithms struggle to learn optimal control policies safely. Loss of control follows, which could result in equipment breakages and even personal injuries.

Artificial neural networkComputer scienceSAFERControl (management)0202 electrical engineering electronic engineering information engineeringReinforcement learning020206 networking & telecommunications02 engineering and technologyMarkov decision processGridOptimal controlIndustrial engineering
researchProduct

Adaptive Task Assignment in Online Learning Environments

2016

With the increasing popularity of online learning, intelligent tutoring systems are regaining increased attention. In this paper, we introduce adaptive algorithms for personalized assignment of learning tasks to student so that to improve his performance in online learning environments. As main contribution of this paper, we propose a a novel Skill-Based Task Selector (SBTS) algorithm which is able to approximate a student's skill level based on his performance and consequently suggest adequate assignments. The SBTS is inspired by the class of multi-armed bandit algorithms. However, in contrast to standard multi-armed bandit approaches, the SBTS aims at acquiring two criteria related to stu…

FOS: Computer and information sciencesClass (computer programming)Computer sciencebusiness.industryComputer Science - Artificial IntelligenceNode (networking)05 social sciences050301 educationContrast (statistics)02 engineering and technologyMachine learningcomputer.software_genrePopularityIntelligent tutoring systemTask (project management)Artificial Intelligence (cs.AI)020204 information systems0202 electrical engineering electronic engineering information engineeringSelection (linguistics)ComputingMilieux_COMPUTERSANDEDUCATIONAdaptive learningArtificial intelligencebusiness0503 educationcomputer
researchProduct

Deep RTS: A Game Environment for Deep Reinforcement Learning in Real-Time Strategy Games

2018

Reinforcement learning (RL) is an area of research that has blossomed tremendously in recent years and has shown remarkable potential for artificial intelligence based opponents in computer games. This success is primarily due to the vast capabilities of convolutional neural networks, that can extract useful features from noisy and complex data. Games are excellent tools to test and push the boundaries of novel RL algorithms because they give valuable insight into how well an algorithm can perform in isolated environments without the real-life consequences. Real-time strategy games (RTS) is a genre that has tremendous complexity and challenges the player in short and long-term planning. The…

FOS: Computer and information sciencesComputer Science - Machine Learningbusiness.industryComputer scienceComputer Science - Artificial IntelligenceComputingMilieux_PERSONALCOMPUTING02 engineering and technologyConvolutional neural networkAccelerated learningMachine Learning (cs.LG)03 medical and health sciences0302 clinical medicineArtificial Intelligence (cs.AI)Real-time strategy0202 electrical engineering electronic engineering information engineeringReinforcement learning020201 artificial intelligence & image processingArtificial intelligencebusiness030217 neurology & neurosurgery
researchProduct

Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire Evacuation Environment

2021

We focus on the important problem of emergency evacuation, which clearly could benefit from reinforcement learning that has been largely unaddressed. Emergency evacuation is a complex task which is difficult to solve with reinforcement learning, since an emergency situation is highly dynamic, with a lot of changing variables and complex constraints that makes it difficult to train on. In this paper, we propose the first fire evacuation environment to train reinforcement learning agents for evacuation planning. The environment is modelled as a graph capturing the building structure. It consists of realistic features like fire spread, uncertainty and bottlenecks. We have implemented the envir…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Science - Artificial IntelligenceComputer scienceQ-learningComputingMilieux_LEGALASPECTSOFCOMPUTINGSystems and Control (eess.SY)02 engineering and technologyOverfittingMachine Learning (cs.LG)FOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringReinforcement learningElectrical and Electronic EngineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550business.industry020206 networking & telecommunicationsComputer Science ApplicationsHuman-Computer InteractionArtificial Intelligence (cs.AI)Control and Systems EngineeringShortest path problemEmergency evacuationComputer Science - Systems and Control020201 artificial intelligence & image processingArtificial intelligenceTransfer of learningbusinessSoftwareIEEE Transactions on Systems, Man, and Cybernetics: Systems
researchProduct

Towards Model-Based Reinforcement Learning for Industry-Near Environments

2019

Deep reinforcement learning has over the past few years shown great potential in learning near-optimal control in complex simulated environments with little visible information. Rainbow (Q-Learning) and PPO (Policy Optimisation) have shown outstanding performance in a variety of tasks, including Atari 2600, MuJoCo, and Roboschool test suite. Although these algorithms are fundamentally different, both suffer from high variance, low sample efficiency, and hyperparameter sensitivity that, in practice, make these algorithms a no-go for critical operations in the industry.

HyperparameterArtificial neural networkComputer sciencebusiness.industrySample (statistics)Variance (accounting)Machine learningcomputer.software_genreVariety (cybernetics)Test suiteReinforcement learningArtificial intelligenceMarkov decision processbusinesscomputer
researchProduct

Interpretable Option Discovery Using Deep Q-Learning and Variational Autoencoders

2021

Deep Reinforcement Learning (RL) is unquestionably a robust framework to train autonomous agents in a wide variety of disciplines. However, traditional deep and shallow model-free RL algorithms suffer from low sample efficiency and inadequate generalization for sparse state spaces. The options framework with temporal abstractions [18] is perhaps the most promising method to solve these problems, but it still has noticeable shortcomings. It only guarantees local convergence, and it is challenging to automate initiation and termination conditions, which in practice are commonly hand-crafted.

Generalizationbusiness.industryComputer scienceAutonomous agentQ-learningSample (statistics)Machine learningcomputer.software_genreLocal convergenceVariety (cybernetics)Reinforcement learningArtificial intelligenceCluster analysisbusinesscomputer
researchProduct

Advancements in Safe Deep Reinforcement Learning for Real-Time Strategy Games and Industry Applications

2022

VDP::Technology: 500::Information and communication technology: 550
researchProduct

FlashRL: A Reinforcement Learning Platform for Flash Games

2017

Reinforcement Learning (RL) is a research area that has blossomed tremendously in recent years and has shown remarkable potential in among others successfully playing computer games. However, there only exists a few game platforms that provide diversity in tasks and state-space needed to advance RL algorithms. The existing platforms offer RL access to Atari- and a few web-based games, but no platform fully expose access to Flash games. This is unfortunate because applying RL to Flash games have potential to push the research of RL algorithms. This paper introduces the Flash Reinforcement Learning platform (FlashRL) which attempts to fill this gap by providing an environment for thousands of…

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceComputer Science - Computer Science and Game TheoryComputer Science and Game Theory (cs.GT)
researchProduct

Towards a Deep Reinforcement Learning Approach for Tower Line Wars

2017

There have been numerous breakthroughs with reinforcement learning in the recent years, perhaps most notably on Deep Reinforcement Learning successfully playing and winning relatively advanced computer games. There is undoubtedly an anticipation that Deep Reinforcement Learning will play a major role when the first AI masters the complicated game plays needed to beat a professional Real-Time Strategy game player. For this to be possible, there needs to be a game environment that targets and fosters AI research, and specifically Deep Reinforcement Learning. Some game environments already exist, however, these are either overly simplistic such as Atari 2600 or complex such as Starcraft II fro…

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceComputingMilieux_PERSONALCOMPUTING
researchProduct

The Dreaming Variational Autoencoder for Reinforcement Learning Environments

2018

Reinforcement learning has shown great potential in generalizing over raw sensory data using only a single neural network for value optimization. There are several challenges in the current state-of-the-art reinforcement learning algorithms that prevent them from converging towards the global optima. It is likely that the solution to these problems lies in short- and long-term planning, exploration and memory management for reinforcement learning algorithms. Games are often used to benchmark reinforcement learning algorithms as they provide a flexible, reproducible, and easy to control environment. Regardless, few games feature a state-space where results in exploration, memory, and plannin…

FOS: Computer and information sciencesMaskinlæringComputer Science - Machine LearningVDP::Computer technology: 551Artificial Intelligence (cs.AI)VDP::Datateknologi: 551Computer Science - Artificial IntelligenceMachine learningDeep learningMachine Learning (cs.LG)
researchProduct

Contrastive Transformer: Contrastive Learning Scheme with Transformer innate Patches

2023

This paper presents Contrastive Transformer, a contrastive learning scheme using the Transformer innate patches. Contrastive Transformer enables existing contrastive learning techniques, often used for image classification, to benefit dense downstream prediction tasks such as semantic segmentation. The scheme performs supervised patch-level contrastive learning, selecting the patches based on the ground truth mask, subsequently used for hard-negative and hard-positive sampling. The scheme applies to all vision-transformer architectures, is easy to implement, and introduces minimal additional memory footprint. Additionally, the scheme removes the need for huge batch sizes, as each patch is t…

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition
researchProduct

Deep Reinforcement Learning using Capsules in Advanced Game Environments

2018

Reinforcement Learning (RL) is a research area that has blossomed tremendously in recent years and has shown remarkable potential for artificial intelligence based opponents in computer games. This success is primarily due to vast capabilities of Convolutional Neural Networks (ConvNet), enabling algorithms to extract useful information from noisy environments. Capsule Network (CapsNet) is a recent introduction to the Deep Learning algorithm group and has only barely begun to be explored. The network is an architecture for image classification, with superior performance for classification of the MNIST dataset. CapsNets have not been explored beyond image classification. This thesis introduce…

researchProduct

Deep Reinforcement Learning using Capsules in Advanced Game Environments

2017

Master's thesis Information- and communication technology IKT590 - University of Agder 2017 Reinforcement Learning (RL) is a research area that has blossomed tremendously in recent years and has shown remarkable potential for arti cial intelligence based opponents in computer games. This success is primarily due to vast capabilities of Convolutional Neural Networks (ConvNet), enabling algorithms to extract useful information from noisy environments. Capsule Network (CapsNet) is a recent introduction to the Deep Learning algorithm group and has only barely begun to be explored. The network is an architecture for image classi cation, with superior performance for classi cation of the MNIST da…

IKT590VDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct

Towards Model-based Reinforcement Learning for Industry-near Environments

2019

Deep reinforcement learning has over the past few years shown great potential in learning near-optimal control in complex simulated environments with little visible information. Rainbow (Q-Learning) and PPO (Policy Optimisation) have shown outstanding performance in a variety of tasks, including Atari 2600, MuJoCo, and Roboschool test suite. While these algorithms are fundamentally different, both suffer from high variance, low sample efficiency, and hyperparameter sensitivity that in practice, make these algorithms a no-go for critical operations in the industry. On the other hand, model-based reinforcement learning focuses on learning the transition dynamics between states in an environme…

FOS: Computer and information sciencesArtificial Intelligence (cs.AI)Computer Science - Artificial Intelligence
researchProduct