0000000000530021

AUTHOR

K. H. Ploog

showing 5 related works from this author

Modulation of the electronic properties of GaN films by surface acoustic waves

2003

We report on the interaction between photogenerated electron-hole pairs and surface acoustic waves (SAW) in GaN films grown on sapphire substrates. The spatial separation of photogenerated carriers by the piezoelectric field of the SAW is evidenced by the quenching of the photoluminescence (PL) intensity. The quenching levels in GaN are significantly smaller than those measured in GaAs under similar conditions. The latter is attributed to the lower exciton ionization efficiency and carrier separation probabilities mediated by the piezoelectric effect. The PL spectra also evidence energy shifts and broadenings of the electronic transitions, which are attributed to the band gap modulation by …

PhotoluminescenceMaterials scienceIII-V semiconductorsSurface acoustic wavesBand gapExcitonRadiation quenchingGeneral Physics and AstronomySemiconductor thin filmsCondensed Matter::Materials Science:FÍSICA [UNESCO]IonizationPiezoelectric semiconductorsPhotoluminescenceQuenchingbusiness.industryUNESCO::FÍSICAWide-bandgap semiconductorGallium compoundsAcoustic waveCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWide band gap semiconductorsGallium compounds ; III-V semiconductors ; Wide band gap semiconductors ; Surface acoustic waves ; Semiconductor thin films ; Photoluminescence ; Radiation quenching ; Piezoelectric semiconductors ; Excitons ; Energy gapEnergy gapSapphireOptoelectronicsExcitonsbusiness
researchProduct

Role of excitons in double Raman resonances in GaAs quantum wells

1996

Raman scattering by longitudinal-optical phonons has been measured in GaAs-AlAs multiple quantum wells at high magnetic fields. Doubly resonant scattering processes are observed at photon energies corresponding to magneto-excitons with different principal quantum numbers for the incoming and outgoing channels. The existence of these initially forbidden scattering processes, their resonance energies, and their relative intensities are correctly reproduced by our theoretical description. The model takes into account the excitonic nature of the intermediate states, as well as scattering processes involving a nonzero in-plane phonon wave vector, which is required to allow inter-Landau level sca…

PhysicsPhonon scatteringCondensed matter physicsCondensed Matter::OtherScatteringScattering lengthCorrelated Electron Systems / High Field Magnet Laboratory (HFML)02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesScattering amplitudeCondensed Matter::Materials Sciencesymbols.namesakeX-ray Raman scattering0103 physical sciencesPrincipal quantum numbersymbolsScattering theoryAtomic physics010306 general physics0210 nano-technologyGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Raman scatteringPhysical Review B
researchProduct

Photoluminescence from strained InAs monolayers in GaAs under pressure

1994

bulk GaAs. At pressures above the band crossover two emission bands are observed. These bands, characterized by having negative pressure coefBcients, are attributed to the type-I transition between conduction-band X „and heavy-hole states of the InAs monolayer and the type-II transition &om X states in GaAs to InAs heavy-hole states. The results are interpreted in terms of tight-binding band-structure calculations for the strained InAs-monolayer — bulk-GaAs system. I. INTRODUCTION Highly strained InAs jGaAs heterostructures have recently attracted interest due to their unusual electronic and optical properties. ~ 4 Epitaxial isomorphic growth of InAs on GaAs can be achieved only up to a sma…

Condensed Matter::Materials ScienceLattice constantMaterials sciencePhotoluminescenceCondensed matter physicsCondensed Matter::OtherBand gapExcitonHydrostatic pressureMonolayerHeterojunctionDirect and indirect band gapsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPhysical Review B
researchProduct

Pressure dependence of the exciton absorption and the electronic subband structure of aGa0.47In0.53As/Al0.48In0.52As multiple-quantum-well system

1992

We have measured the optical absorption of a ${\mathrm{Ga}}_{0.47}$${\mathrm{In}}_{0.53}$As/${\mathrm{Al}}_{0.48}$${\mathrm{In}}_{0.52}$As multiple quantum well at 10 K for pressures up to 7 GPa. The energies of optical transitions between heavy- and light-hole subbands and electron levels of the wells show a blueshift with pressure similar to the bulk lowest direct band gap. We observe a decrease with pressure of the energy splitting between heavy- and light-hole subbands with the same quantum number n. From the analysis of the absorption line shape, we have obtained the pressure dependences of exciton binding energies, oscillator strengths, and linewidths. These results are interpreted in…

PhysicsBand gapOscillator strengthbusiness.industryExcitonBinding energyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectQuantum numberEffective mass (solid-state physics)OpticsDirect and indirect band gapsElectron configurationAtomic physicsbusinessPhysical Review B
researchProduct

X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

2006

We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga 1-x Mn x N (0.06 <x<0.14) thin epilayers grown by molecular beam epitaxy on [0001] SiC substrates. The measurements were performed in fluorescence mode around the Ga and Mn K-edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after …

Valence (chemistry)Absorption edgeAbsorption spectroscopyK-edgeCondensed matter physicsChemistryAnalytical chemistryMagnetic semiconductorCondensed Matter PhysicsSpectroscopyXANESSpectral lineElectronic Optical and Magnetic Materialsphysica status solidi (b)
researchProduct