0000000000535463

AUTHOR

Maria Giller

showing 12 related works from this author

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

2011

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ‘‘radio- hybrid’’ measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features …

Source codeAstronomycomputer.software_genre01 natural sciencesObservatoryAuger experimentRadio detectionSOFTWARES (ANÁLISE)Instrumentationcosmic rays; radio detection; analysis software; detector simulationmedia_commonPhysicsPhysicsDetectoranalysis softwareAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsComputer hardwareNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAnalysis softwareDetector simulationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic Rayradio detectionNuclear physicscosmic raysRAY AIR-SHOWERS0103 physical sciencesDETECTORSInstrumentation (computer programming)010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industrydetector simulationFísicaCosmic ray[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Software frameworkAir showerExperimental High Energy PhysicsEMISSIONbusinesscomputerMONTE-CARLO SIMULATIONS
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

2016

We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…

Ciencias FísicasAstronomyGeneral Physics and Astronomyultra-high energy cosmic raysAstrophysics01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)CODALEMAObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]GeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRange (particle radiation)Radio detectorTUNKA-REXSettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsRadio TechniqueFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysicsradio emissionCIENCIAS NATURALES Y EXACTASRadio wave[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsPhysics and Astronomy (all)0103 physical sciencesextensive air showersHigh Energy Physicsultra-high energy cosmic rays extensive air showers radio emission010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger Observatory010308 nuclear & particles physicsRadiant energyFísicaLOFAR//purl.org/becyt/ford/1.3 [https]LOFARASTROFÍSICASIMULATIONSComputational physicsAstronomíaCOREASExperimental High Energy PhysicsARRAYEMISSION SIMULATIONS LOFAR.EMISSION
researchProduct

Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscope

2020

Extensive air showers, originating from ultra-high energy cosmic rays, have been successfully measured through the use of arrays of water-Cherenkov detectors (WCDs). Sophisticated analyses exploiting WCD data have made it possible to demonstrate that shower simulations, based on different hadronic-interaction models, cannot reproduce the observed number of muons at the ground. The accurate knowledge of the WCD response to muons is paramount in establishing the exact level of this discrepancy. In this work, we report on a study of the response of a WCD of the Pierre Auger Observatory to atmospheric muons performed with a hodoscope made of resistive plate chambers (RPCs), enabling us to selec…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomy01 natural sciences030218 nuclear medicine & medical imaginglaw.invention0302 clinical medicinelawObservatoryatmosphere [muon]Instrumentationphysics.ins-detMathematical PhysicsLarge detector-systems performancePhysicsInstrumentation et méthodes en physiquePerformance of high energy physics detectorsData reduction methods; Large detector systems for particle and astroparticle physics; Large detector-systems performance; Performance of high energy physics detectorsDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsresistive plate chamberInstrumentation and Detectors (physics.ins-det)trajectory [muon]Augerobservatorymuon: atmosphereAstrophysics - Instrumentation and Methods for AstrophysicsData reduction methodsatmosphere [showers]Cherenkov detectorairCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raymuon: trajectoryNuclear physics03 medical and health sciencesHodoscopeData reduction method0103 physical sciencesCalibrationHigh Energy Physicsddc:610cosmic radiation: UHE[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger Observatoryshowers: atmosphere010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicswater [Cherenkov counter]hodoscopeFísicaAutres mathématiquesstabilitycalibrationData reduction methods Large detector systems for particle and astroparticle physics Large detector-systems performance Performance of High Energy Physics DetectorsExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicHigh Energy Physics::ExperimentRAIOS CÓSMICOSastro-ph.IM
researchProduct

Trigger and aperture of the surface detector array of the Pierre Auger Observatory

2010

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…

Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; ExposurePhysics::Instrumentation and DetectorsAstronomyHigh-Energy Cosmi Ray7. Clean energy01 natural sciencesAugerAcceptance and Trigger Efficiency010303 astronomy & astrophysicsInstrumentationComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)PhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryHigh energyFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AIR SHOWERSApertureInstrumentationAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerFOS: Physical sciencesCosmic rayENERGIACosmic RayUltra high energy cosmic rayExposureOpticsultra high energy cosmic rays Auger Observatory extensive airshowers trigger exposure0103 physical sciencesPARTICLESExtensive air showersSurface DetectorInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaUltra high energy cosmic raysUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]TriggerAuger ObservatoryExperimental High Energy PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct

Design and implementation of the AMIGA embedded system for data acquisition

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and admin-istrative staff in Malargtie. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energla Atomica, Agencia Nacional de Promocion Cientffica y Tec-nologica (ANPCyT) , Consejo Nacional de Investigaciones Cientfficas y Tecnicas (CONICET) , Gobierno de la Provincia de Mendoza, Municipalidad de Malargtie, NDM Holdings and Valle Las Leilas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho…

muon: showersDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Physics::Instrumentation and Detectorsdata acquisitionAstronomycosmic radiation: electromagnetic componentengineeringprimary [cosmic radiation]Particle detectors01 natural sciencesenergy: thresholdData acquisition concepthardwareInstrumentationMathematical Physicsshowers [muon]media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEControl and monitor systems onlinePhysicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsthreshold [energy]16. Peace & justiceAugerelectromagnetic component [cosmic radiation]observatoryDetector control systems (detector andexperiment monitoring and slow-control systemslanguageupgradeAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)atmosphere [showers]Land accessarchitectureEuropean communityairAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalgorithmsPolitical science0103 physical sciencesmedia_common.cataloged_instanceddc:530High Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]ddc:610Control and monitor systems online; Data acquisition concepts; Detector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases); Particle detectorsEuropean union010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Ciencias Exactasscintillation countershowers: atmosphere010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsData acquisition conceptsFísicastabilitylanguage.human_languagecosmic radiation: primarymonitoringResearch councilExperimental High Energy PhysicsHigh Energy Physics::ExperimentControl and monitor systems on-linePortuguese[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]HumanitiesRAIOS CÓSMICOSastro-ph.IM
researchProduct

Features of the Energy Spectrum of Cosmic Rays above 2.5×10$^{18}$ eV Using the Pierre Auger Observatory

2020

We report a measurement of the energy spectrum of cosmic rays above $2.5{\times} 10^{18}$ eV based on $215,030$ events. New results are presented: at about $1.3{\times} 10^{19}$ eV, the spectral index changes from $2.51 \pm 0.03 \textrm{ (stat.)} \pm 0.05 \textrm{ (sys.)}$ to $3.05 \pm 0.05 \textrm{ (stat.)}\pm 0.10\textrm{ (sys.)}$, evolving to $5.1\pm0.3\textrm{ (stat.)} \pm 0.1\textrm{ (sys.)}$ beyond $5{\times} 10^{19}$ eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above $5{\times} 10^{18}$ eV …

FOS: Physical sciencespower spectrumGravitation and Astrophysics7. Clean energy01 natural sciences530energy dependencemass spectrumcosmic ray; astroparticle detectors; cosmic ray spectracosmic ray spectraastroparticle detectors5/30103 physical sciencesddc:530energy: densityUHE Cosmic Rays010303 astronomy & astrophysicscosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Ultra-high energy cosmic rays energy spectrum astrophysical implications Cherenkov detectorscosmic radiation: energy spectrum010308 nuclear & particles physicsPhysicsAugerobservatoryEnergy SpectrumspectralAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]energy spectrum [cosmic radiation]density [energy]
researchProduct