0000000000538440
AUTHOR
Sarah Shirley
The mycotoxin zearalenone enhances cell proliferation, colony formation and promotes cell migration in the human colon carcinoma cell line HCT116.
IF 3.522; International audience; Zearalenone (ZEN) and Aflatoxin B1 (AFB1) are fungal secondary metabolites produced by Fusarium and Aspergillus genera, respectively. These mycotoxins are found world-wide as corn and wheat contaminants. AFB1 is probably the most toxic and carcinogenic mycotoxin. It has been demonstrated to be mutagenic, genotoxic, and hepatocarcinogenic. ZEN is a non-steroidal estrogenic mycotoxin that displays hepatotoxicity, immunotoxicity and genotoxicity. Its mutagenic and carcinogenic properties have so far remained controversial and questionable. Using the colon carcinoma cell line HCT116, we will show here that ZEN, at low concentrations, enhances cell proliferation…
Death receptors as targets in cancer
Anti-tumour therapies based on the use PARAs (pro-apoptotic receptor agonists), including TRAIL (TNF-Related Apoptosis inducing Ligand) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future…
Ochratoxin A and T-2 Toxin Induce Clonogenicity and Cell Migration in Human Colon Carcinoma and Fetal Lung Fibroblast Cell Lines
T-2 toxin and Ochratoxin A (OTA) are toxic secondary metabolites produced by various fungi, and together they contaminate feedstuffs worldwide. T-2 toxin and OTA may exert carcinogenic action in rodent. Despite the various in vivo experiments, carcinogenicity of these two mycotoxins has not yet been proven for human. In this current study, we proposed to investigate, in Human colon carcinoma cells and fetal lung fibroblast-like cells transfected with MYC, the effect of T-2 toxin and OTA on cell clonogenicity and cell migration. Results of the present investigation showed that T2-toxin as well as OTA has an important clonogenic effect in all cell lines, suggesting that these mycotoxins could…
TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT.
International audience; BACKGROUND: TRAIL/Apo2L is a pro-apoptotic ligand of the TNF family that engages the apoptotic machinery through two pro-apoptotic receptors, TRAIL-R1 and TRAIL-R2. This cell death program is tightly controlled by two antagonistic receptors, TRAIL-R3 and TRAIL-R4, both devoid of a functional death domain, an intracellular region of the receptor, required for the recruitment and the activation of initiator caspases. Upon TRAIL-binding, TRAIL-R4 forms a heteromeric complex with the agonistic receptor TRAIL-R2 leading to reduced caspase-8 activation and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: We provide evidence that TRAIL-R4 can also exhibit, in a ligand independent…
Regulating TRAIL Receptor-Induced Cell Death at the Membrane: A Deadly Discussion
Article Open access plus; International audience; The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.
Death receptors as targets in cancer
Anti-tumour therapies based on the use PARAs (pro-apoptotic receptor agonists), including TRAIL (TNF-Related Apoptosis inducing Ligand) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future…