0000000000540388
AUTHOR
Viki-veikko Elomaa
Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP
Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \ensuremath1⋅10−8\ensuremath1⋅10−8 with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP. peerReviewed
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed
Total absorption study of the \beta decay of 102,104,105Tc
The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed
Electron capture on116In and implications for nuclear structure related to double-βdecay
The electron capture decay branch of ${}^{116}$In has been measured to be $[2.46\ifmmode\pm\else\textpm\fi{}0.44(\mathrm{stat}.)\ifmmode\pm\else\textpm\fi{}0.39(\mathrm{syst}.)]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the $(p,n)$ charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclear-structure calculations of the matrix element for the neutrinoless double-$\ensuremath{\beta}$ decay of ${}^{116}$Cd and other nuclides.
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra
International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…
Low-spin excitations in the 109Tc nucleus
Monoisotopic samples of ${}^{109}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{109}$Tc. Spin and parity 5/2${}^{+}$ for the ground state of ${}^{109}$Mo, proposed earlier, are supported in the present work. Three new low-energy levels observed in ${}^{109}$Tc are interpreted as bandheads of the $\ensuremath{\pi}3/{2}^{\ensuremath{-}}$[301], $\ensuremath{\pi}5/{2}^{\ensuremath{-}}$[303], and $\ensuremath{\pi}1/{2}^{+}$[431] configurations, respectively. A further three levels observed around 0.4 Me…
Mass measurements for explosive nucleosynthesis in stars
Atomic masses of almost 50 neutron-deficient isotopes in the region of tin and below were measured with the high-precision mass spectrometer JYFLTRAP Penning trap setup at the IGISOL facility in Jyv¨askyl¨a. The masses have a direct impact on the nucleosynthesis modelling of neutron-deficient isotopes and were used for rp- and p-process model calculations. For example, the abundance of stable molybdenum and ruthenium isotopes can not be explained with present knowledge. The rp process has been predicted to end in the SnSbTecycle. The new mass measurements do not allow a strong SnSbTe-cycle to be formed. A carbon-cluster ion source based on laser ablation has been constructed. The source was…
Isomer and decay studies for the rp process at IGISOL
This article reviews the decay studies of neutron-deficient nuclei within the mass region \ensuremathA=56--100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp -process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and is…
Structure of 115Ag studied by β− decays of 115Pd and 115mPd
The excited levels of 115Ag have been studied via the beta decay of 115Pd and 115Pdm. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of 115Pdm which was practically unknown before this work. Transition intensities and log10 f t values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of 115Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich silver isotopes, and new spin assignments as well as identificatio…
Precise half-life measurement of the Si-26 ground state
The beta-decay half-life of 26Si was measured with a relative precision of 1.4*10e3. The measurement yields a value of 2.2283(27) s which is in good agreement with previous measurements but has a precision that is better by a factor of 4. In the same experiment, we have also measured the non-analogue branching ratios and could determine the super-allowed one with a precision similar to the previously reported measurements. The experiment was done at the Accelerator Laboratory of the University of Jyvaskyla where we used the IGISOL technique with the JYFLTRAP facility to separate pure samples of 26Si.
Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU
Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complemen…
Structure of115Ag studied byβ−decays of115Pd and115Pdm
The excited levels of ${}^{115}$Ag have been studied via the beta decay of ${}^{115}$Pd and ${}^{115}$Pd${}^{m}$. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of ${}^{115}$Pd${}^{m}$ which was practically unknown before this work. Transition intensities and ${\mathrm{log}}_{10}ft$ values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of ${}^{115}$Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich sil…
Electron capture on 116In and implications for nuclear structure related to double-\beta decay
The electron capture decay branch of 116In has been measured to be [2.46 ± 0.44(stat.) ± 0.39(syst.)] × 10−4 using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the (p, n) charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclearstructure calculations of the matrix element for the neutrinoless double-β decay of 116Cd and other nuclides. peerReviewed
Shape coexistence in the odd-odd nucleus 98Y : the role of the g9/2 neutron extruder
Excited states in 98Y, populated in neutron-induced fission of 235U and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in 98Y: a deformed one with T1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T1/2 = 0.45(15)μs, analogous to the 8+ isomer in 96Y, corresponding to the (νg7/2,πg9/2)8+ spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in 98Y. This result and the studies of excited le…
Quenching of the SnSbTe Cycle in the rp-Process
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br87 , Br88 , and Rb94
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay
Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed
Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap
The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed
JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification
In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…
Total absorption study of theβdecay of102,104,105Tc
The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.
Quenching of the SnSbTe Cycle in therpProcess
The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.