0000000000543044

AUTHOR

Philipp Gegenwart

showing 3 related works from this author

Strain induced renormalization of transport properties in UPt3 thin films

1996

The growth of sputter deposited UPt3 thin films on Al2O3 (1012), LaAlO3 (111) and SrTiO3 (111) was investigated. We found strongly 0001-textured growth of UPt3 in a small compositional range of 23–25% uranium content. For Al2O3-and LaAlO3-substrates no in-plane order could be observed whereas epitaxial growth was initiated on SrTiO3 (111): The growth can be identified as Vollmer-Weber like resulting in the formation of large lateral strain as a consequence of the growth mode and a lattice misfit of −4.3% between UPt3 (0001) and SrTiO3 (111). Strong deviations from the typical heavy-fermion characteristics in electronic transport properties like resistivity, magnetoresitivity and Hall-effect…

Lateral strainMaterials scienceCondensed matter physicsGeneral Physics and Astronomychemistry.chemical_elementUraniumEpitaxyRenormalizationchemistryElectrical resistivity and conductivitySputteringLattice (order)ddc:530Thin filmCzechoslovak Journal of Physics
researchProduct

Growth characteristics of sputter-deposited thin films

1996

Thin films of the heavy-fermion superconductor were deposited on various substrate materials in various orientations by means of a quasi-multilayer sputter process. Strongly (0001)-textured growth of the hexagonal compound was found for a uranium content in the range of 23% to 28% on sapphire and with perfect in-plane order on the latter substrate material. Atomic force microscopy and scanning electron microscopy revealed a Vollmer - Weber-like growth mode resulting in the development of large compressive strain in films on . As a result the electronic transport properties - in particular the temperature dependence of the resistivity - were strongly renormalized. Strong deviations from the …

SuperconductivityRange (particle radiation)Materials scienceScanning electron microscopeMetallurgyAnalytical chemistrySubstrate (electronics)Condensed Matter PhysicsCondensed Matter::Materials ScienceElectrical resistivity and conductivitySputteringSapphireGeneral Materials ScienceThin filmJournal of Physics: Condensed Matter
researchProduct

Tracking local magnetic dynamics via high-energy charge excitations in a relativistic Mott insulator

2016

We use time- and energy-resolved optical spectroscopy to investigate the coupling of electron-hole excitations to the magnetic environment in the relativistic Mott insulator Na$_2$IrO$_3$. We show that, on the picosecond timescale, the photoinjected electron-hole pairs delocalize on the hexagons of the Ir lattice via the formation of quasi-molecular orbital (QMO) excitations and the exchange of energy with the short-range-ordered zig-zag magnetic background. The possibility of mapping the magnetic dynamics, which is characterized by typical frequencies in the THz range, onto high-energy (1-2 eV) charge excitations provides a new platform to investigate, and possibly control, the dynamics of…

PhysicsElectronic Optical and Magnetic Materials; Condensed Matter PhysicsHigh energyCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Terahertz radiationMott insulatorFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsSettore FIS/03 - FISICA DELLA MATERIA01 natural sciences3. Good healthCondensed Matter - Strongly Correlated ElectronsZigzagPicosecondLattice (order)0103 physical sciencesElectronicddc:530Optical and Magnetic Materials010306 general physics0210 nano-technologySpectroscopy
researchProduct