0000000000545784

AUTHOR

P Lebrun

showing 8 related works from this author

The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays

2011

Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesCherenkov detectorAuger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic rayParticle detectorsAstrophysics01 natural sciencesCosmic RayCHERENKOV DETECTORAugerlaw.inventionlaw0103 physical sciencesCherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectorsBURSTSWATERForbush decreaseUltra-high-energy cosmic ray010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationMathematical Physics0105 earth and related environmental sciencesPhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASNeutron monitorLarge detector systems for particle and astroparticle physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov detectorsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísica[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Solar activtyExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicFísica nuclearParticle detectorHeliosphereJournal of Instrumentation
researchProduct

Higgs boson studies at the Tevatron

2013

We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c2 produced in the gluon-gluon fusion, WH, ZH, tt̄H, and vector boson fusion processes, and decaying in the H→bb̄, H→W+W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data correspond to integrated luminosities of up to 10 fb-1 and were collected at the Fermilab Tevatron in pp̄ collisions at √s=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2. The local significance corresponds to 3.0 standard deviations at mH=125 GeV/c2, consistent with the…

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; BROKEN SYMMETRIESSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesContext (language use)ATLAS DETECTORddc:500.2Standard Model Higgs boson7. Clean energy01 natural sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesBibliography[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESFermilab010306 general physicsPhysicsHIGGS BOSONB-JET IDENTIFICATIONLarge Hadron ColliderPP COLLISIONS010308 nuclear & particles physics4. EducationHigh Energy Physics::PhenomenologyROOT-S=1.96 TEVPARTON DISTRIBUTIONSExperimental High Energy PhysicsHiggs bosonproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSYMMETRIESCDFB-JET IDENTIFICATION; STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; ROOT-S=1.96 TEV; SEARCH; LHC; SYMMETRIESHigh Energy Physics::ExperimentLHC
researchProduct

Measurement of the Proton-Air Cross Section at root s=57 TeV with the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505±22(stat)-36+28(syst)]mb is found. © 2012 American Physical Society.

Physics and Astronomy (all)Astrophysics::High Energy Astrophysical PhenomenaSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

Erratum: The lateral trigger probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory (Astroparticl…

2012

The Fig. 7, originally consisting of 4 panels, was truncated in the printed version (the last panel was missing). The complete version is printed again

Astronomy and Astrophysics
researchProduct

Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

2011

The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies $E>E_{th}=5.5\times 10^{19}$ eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at $E>E_{th}$ are heavy nuclei with charge $Z$, the proton component of the sources should lead to excesses in the same regions at energies $E/Z$. We here report the lack of anisotropies in these directions at energies above $E_{th}/Z$ (for illustrative values of $Z=6,\ 13,\ 26$). If the anisotropies above $E_{th}$ are du…

ACTIVE GALACTIC NUCLEI[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ProtonAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentAcceleration (differential geometry)Cosmic rayultra high energy cosmic rays; cosmic ray experimentsultra high energy cosmic rays7. Clean energy01 natural sciencesultra high energy cosmic rayAugerNuclear physics0103 physical sciencesUltra-high-energy cosmic ray010306 general physicsAnisotropyNuclear ExperimentDETECTORHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaCharge (physics)Astronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical PhenomenaJournal of Cosmology and Astroparticle Physics
researchProduct

Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Obser…

2016

This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…

AstronomyAstrophysicsNeutrino experiments ultra high energy cosmic rays cosmic ray experiments neutrino astronomy.01 natural sciencesASTROPHYSICAL SOURCESultra high energy cosmic raylaw.inventionIceCubeAstronomi astrofysik och kosmologimagnetic [deflection]lawAstronomy Astrophysics and Cosmologycosmic ray experiments; neutrino astronomy; neutrino experiments; ultra high energy cosmic rays; Astronomy and Astrophysics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAngular distanceAstrophysics::Instrumentation and Methods for AstrophysicsVHE [neutrino]GALACTIC MAGNETIC-FIELDcascadeAugerobservatorycosmic radiationCascadestackingcosmic ray experi- mentsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomenaphysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical Phenomenacosmic ray experimentFOS: Physical sciencesCosmic rayultra high energy cosmic raysSURFACE DETECTORTelescopeneutrino astronomyneutrino experiments0103 physical sciencesddc:530Angular resolutionHigh Energy PhysicsPierre Auger ObservatorySPECTRUMMuon010308 nuclear & particles physicsAstronomy and Astrophysicsflux [neutrino]ASTROFÍSICAPhysics and Astronomyangular resolutioncorrelationExperimental High Energy Physicsneutrino experimenttracks [muon]cosmic ray experiments
researchProduct

Results of a self-triggered prototype system for radio-detection of extensive air showers at the Pierre Auger Observatory

2012

We describe the experimental setup and the results of RAuger, a small radio-antenna array, consisting of three fully autonomous and self-triggered radio-detection stations, installed close to the center of the Surface Detector (SD) of the Pierre Auger Observatory in Argentina. The setup has been designed for the detection of the electric field strength of air showers initiated by ultra-high energy cosmic rays, without using an auxiliary trigger from another detection system. Installed in December 2006, RAuger was terminated in May 2010 after 65 registered coincidences with the SD. The sky map in local angular coordinates (i.e., zenith and azimuth angles) of these events reveals a strong azi…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]self-triggergeomagnetic effect.media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray01 natural sciencesElectric field0103 physical sciencesextensive air showers010306 general physicsCosmic raysInstrumentationMathematical PhysicsZenithmedia_commonPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsCosmic rayextensive air showerAntennas; Large detector systems for particle and astroparticle physics3. Good healthComputational physicsAzimuthEarth's magnetic fieldSkyAntennasAstrophysics - High Energy Astrophysical Phenomenaradio-detection
researchProduct

Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

2014

We combine six measurements of the inclusive top-quark pair (tt̄) production cross section (σtt̄) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at s=1.96TeV. The data correspond to integrated luminosities of up to 8.8fb-1. We obtain a value of σtt̄=7.60±0.41pb for a top-quark mass of mt=172.5GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35-0.33+0.28pb at next-to-next-to-leading order and next-to-next-to leading logarithms in pert…

Top quarkP(P)OVER-BAR COLLISIONSTevatron7. Clean energylaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFERMILABFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderPhysicsP(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; PARTON DISTRIBUTIONS; HADRON COLLIDERS; LEADING ORDER; T(T)OVER-BAR; DETECTOR; LHC; QCD; FERMILABPerturbative QCD3. Good healthROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCT(T)OVER-BARParticle physicsNuclear and High Energy PhysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsMASSNuclear physicsSEARCHColliderParticle PhysicsDETECTORAstrophysics::Galaxy AstrophysicsScience & Technologyhep-exLEADING ORDERHigh Energy Physics::PhenomenologyTop quarkQCDP(P)OVER-BAR COLLISIONS; T(T)OVER-BAR; DETECTOR; SEARCH; MASSPair productionPARTON DISTRIBUTIONSExperimental High Energy PhysicsCollider PhysicsCDFHigh Energy Physics::ExperimentParticle Physics; Collider Physics; Top quark
researchProduct