0000000000553810

AUTHOR

S. Pirro

Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta (2 νββ) decay of 100Mo to the ground state of 100Ru using lithium molybdate (Li2100MoO4) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg× day, the half-life of 100Mo is determined to be T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the most accurate determination of the 2 νββ half-life of 100Mo to date.

research product

Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of ^{82}Se with CUPID-0.

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

research product

Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays : the ACCESS project

The ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes) project aims to establish a novel technique to perform precision measurements of forbidden β-decays, which can serve as an important benchmark for nuclear physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on natural and doped crystals containing β-emitting radionuclides. In this way, natural (e.g. 113Cd and 115In) and synthetic isotopes (e.g. 99Tc) will be simultaneously measured with a common experimental technique. The array will also include further crystals optimised to disentangle the different backgro…

research product

Latest results from CUPID-0

International audience; CUPID-0 is a pilot experiment in scintillating cryogenic calorimetry for the search of neutrino-less double beta decay. 26 ZnSe crystals were operated continuously in the first project phase (March 2017 - December 2018), demonstrating unprecedented low levels of background in the region of interest at the Q-value of $^{82}\rm{Se}$. From this successful experience comes a demonstration of full alpha to beta/gamma background separation, the most stringent limits on the $^{82}\rm{Se}$ neutrino-less double beta decay, as well as the most precise measurement of the $^{82}$Se half-life. After a detector upgrade, CUPID-0 began its second and last phase (June 2019 - February…

research product

Evidence of Single State Dominance in the Two-Neutrino Double- β Decay of Se82 with CUPID-0

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product