0000000000562173
AUTHOR
Francesco Gargano
Complex singularities in KdV solutions
In the small dispersion regime, the KdV solution exhibits rapid oscillations in its spatio-temporal dependence. We show that these oscillations are caused by the presence of complex singularities that approach the real axis. We give a numerical estimate of the asymptotic dynamics of the poles.
Tridiagonality, supersymmetry and non self-adjoint Hamiltonians
In this paper we consider some aspects of tridiagonal, non self-adjoint, Hamiltonians and of their supersymmetric counterparts. In particular, the problem of factorization is discussed, and it is shown how the analysis of the eigenstates of these Hamiltonians produce interesting recursion formulas giving rise to biorthogonal families of vectors. Some examples are proposed, and a connection with bi-squeezed states is analyzed.
Unsteady Separation and Navier-Stokes Solutions at High Reynolds Numbers
We compute the numerical solutions for Navier-Stokes and Prandtl’s equations in the case of a uniform bidimensional flow past an impulsively started disk. The numerical approx- imation is based on a spectral methods imple- mented in a Grid environment. We investigate the relationship between the phenomena of unsteady separation of the flow and the exponential decay of the Fourier spectrum of the solutions. We show that Prandtl’s solution develops a separation singularity in a finite time. Navier-Stokes solutions are computed over a range of Reynolds numbers from 3000 to 50000. We show that the appearance of large gradients of the pressure in the stream- wise direction, reveals that the visc…
Some remarks on few recent results on the damped quantum harmonic oscillator
Abstract In a recent paper, Deguchi et al. (2019), the authors proposed an analysis of the damped quantum harmonic oscillator in terms of ladder operators. This approach was shown to be partly incorrect in Bagarello et al. (2019), via a simple no-go theorem. More recently, (Deguchi and Fujiwara, 2019), Deguchi and Fujiwara claimed that our results in Bagarello et al. (2019) are wrong, and compute what they claim is the square integrable vacuum of their annihilation operators. In this brief note, we show that their vacuum is indeed not a vacuum, and we try to explain what is behind their mistakes in Deguchi et al. (2019) and Deguchi and Fujiwara (2019). We also propose a very simple example …
Population dynamics based on ladder bosonic operators
Abstract We adopt an operatorial method, based on truncated bosons, to describe the dynamics of populations in a closed region with a non trivial topology. The main operator that includes the various mechanisms and interactions between the populations is the Hamiltonian, constructed with the density and transport operators. The whole evolution is derived from the Schrodinger equation, and the densities of the populations are retrieved from the normalized expected values of the density operators. We show that this approach is suitable for applications in very large domain, solving the computational issues that typically occur when using an Hamiltonian based on fermionic ladder operators.
Modeling epidemics through ladder operators
Highlights • We propose an operatorial model to describe epidemics. • The model describes well the asymptotic numbers of the epidemics. • Ladder operators are used to model exchanges between the “actors” of the system.
Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions
AbstractNumerical solutions of the laminar Prandtl boundary-layer and Navier–Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. The various viscous–inviscid interactions that occur during the unsteady separation process are investigated by applying complex singularity analysis to the wall shear and streamwise velocity component of the two solutions. This is carried out using two different methodologies, namely a singularity-tracking method and the Padé approximation. It is shown how the van Dommelen and Shen singularity that occurs in solutions of the Prandtl boundary-layer equations evolves in the complex plane be…
Non-hermitian operator modelling of basic cancer cell dynamics
We propose a dynamical system of tumor cells proliferation based on operatorial methods. The approach we propose is quantum-like: we use ladder and number operators to describe healthy and tumor cells birth and death, and the evolution is ruled by a non-hermitian Hamiltonian which includes, in a non reversible way, the basic biological mechanisms we consider for the system. We show that this approach is rather efficient in describing some processes of the cells. We further add some medical treatment, described by adding a suitable term in the Hamiltonian, which controls and limits the growth of tumor cells, and we propose an optimal approach to stop, and reverse, this growth.
Spreading of Competing Information in a Network
We propose a simple approach to investigate the spreading of news in a network. In more detail, we consider two different versions of a single type of information, one of which is close to the essence of the information (and we call it good news), and another of which is somehow modified from some biased agent of the system (fake news, in our language). Good and fake news move around some agents, getting the original information and returning their own version of it to other agents of the network. Our main interest is to deduce the dynamics for such spreading, and to analyze if and under which conditions good news wins against fake news. The methodology is based on the use of ladder fermion…
Quantum mechanical settings inspired by RLC circuits
In some recent papers several authors used electronic circuits to construct loss and gain systems. This is particularly interesting in the context of PT-quantum mechanics, where this kind of effects appears quite naturally. The electronic circuits used so far are simple, but not so much. Surprisingly enough, a rather trivial RLC circuit can be analyzed with the same perspective and it produces a variety of unexpected results, both from a mathematical and on a physical side. In this paper we show that this circuit produces two biorthogonal bases associated to the Liouville matrix $\Lc$ used in the treatment of its dynamics, with a biorthogonality which is linked to the value of the parameter…
𝒟 $\mathcal {D}$ -Deformed Harmonic Oscillators
We analyze systematically several deformations arising from two-dimensional harmonic oscillators which can be described in terms of $\cal{D}$-pseudo bosons. They all give rise to exactly solvable models, described by non self-adjoint hamiltonians whose eigenvalues and eigenvectors can be found adopting the quite general framework of the so-called $\cal{D}$-pseudo bosons. In particular, we show that several models previously introduced in the literature perfectly fit into this scheme.
Una stima statistica, effettuata mediante i metodi di ricampionamento jackknife e bootstrap, dei confini della normalità o regolarità delle oscillazioni delle frequenze delle misure di un fenomeno quantitativo collegabile ad un fenomeno qualitativo
Singularity formation and separation phenomena in boundary layer theory
In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.
Exploring connectivity between spawning and nursery areas ofMullus barbatus(L., 1758) in the Mediterranean through a dispersal model
Connectivity between spawning and nursery areas plays a major role in determining the spatial structure of fish populations and the boundaries of stock units. Here, the potential effects of surface current on a red mullet population in the Central Mediterranean were simulated using a physical oceanographic model. Red mullet larvae were represented as Lagrangian drifters released in known spawning areas of the Strait of Sicily (SoS), which represents one of the most productive demersal fishing-grounds of the Mediterranean. To consider the effect of inter-annual variability of oceanographic patterns, numerical simulations were performed for the spawning seasons from 1999 to 2012. The main goa…
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different $Re$ numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous int…
Regularized Euler-alpha motion of an infinite array of vortex sheets
We consider the Euler- $$\alpha $$ regularization of the Birkhoff–Rott equation and compare its solutions with the dynamics of the non regularized vortex-sheet. For a flow induced by an infinite array of planar vortex-sheets we analyze the complex singularities of the solutions.Through the singularity tracking method we show that the regularized solution has several complex singularities that approach the real axis. We relate their presence to the formation of two high-curvature points in the vortex sheet during the roll-up phenomenon.
Coordinate representation for non Hermitian position and momentum operators
In this paper we undertake an analysis of the eigenstates of two non self-adjoint operators $\hat q$ and $\hat p$ similar, in a suitable sense, to the self-adjoint position and momentum operators $\hat q_0$ and $\hat p_0$ usually adopted in ordinary quantum mechanics. In particular we discuss conditions for these eigenstates to be {\em biorthogonal distributions}, and we discuss few of their properties. We illustrate our results with two examples, one in which the similarity map between the self-adjoint and the non self-adjoint is bounded, with bounded inverse, and the other in which this is not true. We also briefly propose an alternative strategy to deal with $\hat q$ and $\hat p$, based …
Bi-squeezed states arising from pseudo-bosons
Extending our previous analysis on bi-coherent states, we introduce here a new class of quantum mechanical vectors, the \emph{bi-squeezed states}, and we deduce their main mathematical properties. We relate bi-squeezed states to the so-called regular and non regular pseudo-bosons. We show that these two cases are different, from a mathematical point of view. Some physical examples are considered.
Route to chaos in the weakly stratified Kolmogorov flow
We consider a two-dimensional fluid exposed to Kolmogorov’s forcing cos(ny) and heated from above. The stabilizing effects of temperature are taken into account using the Boussinesq approximation. The fluid with no temperature stratification has been widely studied and, although relying on strong simplifications, it is considered an important tool for the theoretical and experimental study of transition to turbulence. In this paper, we are interested in the set of transitions leading the temperature stratified fluid from the laminar solution [U∝cos(ny),0, T ∝ y] to more complex states until the onset of chaotic states. We will consider Reynolds numbers 0 < Re ≤ 30, while the Richardson numb…
A computational method for the Helmholtz equation in unbounded domains based on the minimization of an integral functional
Abstract We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.
Numerical study of the primitive equations in the small viscosity regime
In this paper we study the flow dynamics governed by the primitive equations in the small viscosity regime. We consider an initial setup consisting on two dipolar structures interacting with a no slip boundary at the bottom of the domain. The generated boundary layer is analyzed in terms of the complex singularities of the horizontal pressure gradient and of the vorticity generated at the boundary. The presence of complex singularities is correlated with the appearance of secondary recirculation regions. Two viscosity regimes, with different qualitative properties, can be distinguished in the flow dynamics.
High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex array
Numerical solutions of Prandtl’s equation and Navier Stokes equations are considered for the two dimensional flow induced by an array of periodic rec- tilinear vortices interacting with an infinite plane. We show how this initial datum develops a separation singularity for Prandtl equation. We investigate the asymptotic validity of boundary layer theory considering numerical solu- tions for the full Navier Stokes equations at high Reynolds numbers.
Eckhaus and zigzag instability in a chemotaxis model of multiple sclerosis
We present a theoretical and numerical study of the bifurcations of the stationary patterns supported by a chemotactic model of Multiple Sclerosis (MS). We derive the normal forms of the dynamics which allows to predict the appearance and stabilization of the emerging branches describing the concentric patterns typical of Balo's sclerosis, a very aggressive variant of MS. Spatial modulation of the Turing-type structures through a zigzag instability is also addressed. The nonlinear stage of the Eckhaus and zigzag instability is investigated numerically: defect-mediated wavenumber adjustments are recovered and the time of occurrence of phase-slips is studied as the system parameters are varie…
Model pseudofermionic systems: Connections with exceptional points
We discuss the role of pseudo-fermions in the analysis of some two-dimensional models, recently introduced in connection with non self-adjoint hamiltonians. Among other aspects, we discuss the appearance of exceptional points in connection with the validity of the extended anti-commutation rules which define the pseudo-fermionic structure.
Eigenvalues of non-hermitian matrices: a dynamical and an iterative approach. Application to a truncated Swanson model
We propose two different strategies to find eigenvalues and eigenvectors of a given, not necessarily Hermitian, matrix (Formula presented.). Our methods apply also to the case of complex eigenvalues, making the strategies interesting for applications to physics and to pseudo-Hermitian quantum mechanics in particular. We first consider a dynamical approach, based on a pair of ordinary differential equations defined in terms of the matrix (Formula presented.) and of its adjoint (Formula presented.). Then, we consider an extension of the so-called power method, for which we prove a fixed point theorem for (Formula presented.) useful in the determination of the eigenvalues of (Formula presented…
Modeling interactions between political parties and electors
In this paper we extend some recent results on an operatorial approach to the description of alliances between political parties interacting among themselves and with a basin of electors. In particular, we propose and compare three different models, deducing the dynamics of their related {\em decision functions}, i.e. the attitude of each party to form or not an alliance. In the first model the interactions between each party and their electors are considered. We show that these interactions drive the decision functions towards certain asymptotic values depending on the electors only: this is the {\em perfect party}, which behaves following the electors' suggestions. The second model is an …
Projector operators in clustering
In a recent paper, the notion of quantum perceptron has been introduced in connection with projection operators. Here, we extend this idea, using these kind of operators to produce a clustering machine, that is, a framework that generates different clusters from a set of input data. Also, we consider what happens when the orthonormal bases first used in the definition of the projectors are replaced by frames and how these can be useful when trying to connect some noised signal to a given cluster. Copyright © 2016 John Wiley & Sons, Ltd.
A no-go result for the quantum damped harmonic oscillator
Abstract In this letter we show that it is not possible to set up a canonical quantization for the damped harmonic oscillator using the Bateman Lagrangian. In particular, we prove that no square integrable vacuum exists for the natural ladder operators of the system, and that the only vacua can be found as distributions. This implies that the procedure proposed by some authors is only formally correct, and requires a much deeper analysis to be made rigorous.
Singular behavior of a vortex layer in the zero thickness limit
The aim of this paper is to study the Euler dynamics of a 2D periodic layer of non uniform vorticity. We consider the zero thickness limit and we compare the Euler solution with the vortex sheet evolution predicted by the Birkhoff-Rott equation. The well known process of singularity formation in shape of the vortex sheet correlates with the appearance of several complex singularities in the Euler solution with the vortex layer datum. These singularities approach the real axis and are responsible for the roll-up process in the layer motion.
Analytic solutions and Singularity formation for the Peakon b--Family equations
This paper deals with the well-posedness of the b-family equation in analytic function spaces. Using the Abstract Cauchy-Kowalewski theorem we prove that the b-family equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic and it belongs to H s with s>3/2, and the momentum density u 0-u 0, xx does not change sign, we prove that the solution stays analytic globally in time, for b≥1. Using pseudospectral numerical methods, we study, also, the singularity formation for the b-family equations with the singularity tracking method. This method allows us to follow the process of the singularity formation in the complex plane as the singularity a…
Singularity formation for Prandtl’s equations
Abstract We consider Prandtl’s equations for an impulsively started disk and follow the process of the formation of the singularity in the complex plane using the singularity tracking method. We classify Van Dommelen and Shen’s singularity as a cubic root singularity. We introduce a class of initial data, uniformly bounded in H 1 , which have a dipole singularity in the complex plane. These data lead to a solution blow-up whose time can be made arbitrarily short within the class. This is numerical evidence of the ill-posedness of the Prandtl equations in H 1 . The presence of a small viscosity in the streamwise direction changes the behavior of the singularities. They stabilize at a distanc…
Dynamics of Confined Crowd Modelled Using Fermionic Operators
An operatorial method based on fermionic operators is used to describe the dynamics of a crowd made of different kind of populations mutually interacting and moving in a two–dimensional bounded closed region. The densities of the populations are recovered through the Heisenberg equation and the diffusion process is driven by the Hamiltonian operator defined by requiring that the populations move along optimal paths. We apply the model obtained in a concrete situation and we discuss the effect of the interaction between the populations during their motion.
Unsteady Separation for High Reynolds Numbers Navier-Stokes Solutions
In this paper we compute the numerical solutions of Navier-Stokes equations in the case of the two dimensional disk impulsively started in a uniform back- ground flow. We shall solve the Navier-Stokes equations (for different Reynolds numbers ranging from 1.5 · 10^3 up to 10^5 ) with a fully spectral numerical scheme. We shall give a description of unsteady separation process in terms of large and small scale interactions acting over the flow. The beginning of these interactions will be linked to the topological change of the streamwise pressure gradient on the disk. Moreover we shall see how these stages of separation are related to the complex singularities of the solution. Infact the ana…
Wavefront invasion for a chemotaxis model of Multiple Sclerosis
In this work we study wavefront propagation for a chemotaxis reaction-diffusion system describing the demyelination in Multiple Sclerosis. Through a weakly non linear analysis, we obtain the Ginzburg–Landau equation governing the evolution of the amplitude of the pattern. We validate the analytical findings through numerical simulations. We show the existence of traveling wavefronts connecting two different steady solutions of the equations. The proposed model reproduces the progression of the disease as a wave: for values of the chemotactic parameter below threshold, the wave leaves behind a homogeneous plaque of apoptotic oligodendrocytes. For values of the chemotactic coefficient above t…
Bi-coherent states as generalized eigenstates of the position and the momentum operators
AbstractIn this paper, we show that the position and the derivative operators, $${{\hat{q}}}$$ q ^ and $${{\hat{D}}}$$ D ^ , can be treated as ladder operators connecting various vectors of two biorthonormal families, $${{{\mathcal {F}}}}_\varphi $$ F φ and $${{{\mathcal {F}}}}_\psi $$ F ψ . In particular, the vectors in $${{{\mathcal {F}}}}_\varphi $$ F φ are essentially monomials in x, $$x^k$$ x k , while those in $${{{\mathcal {F}}}}_\psi $$ F ψ are weak derivatives of the Dirac delta distribution, $$\delta ^{(m)}(x)$$ δ ( m ) ( x ) , times some normalization factor. We also show how bi-coherent states can be constructed for these $${{\hat{q}}}$$ q ^ and $${{\hat{D}}}$$ D ^ , both as con…
Where do recruits come from? Backward Lagrangian simulation for the deep water rose shrimps in the Central Mediterranean Sea
Backward-in-time Lagrangian dispersion models can efficiently reconstruct drifters trajectories by linking known arrival positions to potential sources. This approach was applied to the deep water rose shrimp (Parapenaeus longirostris) in the Strait of Sicily (central Mediterranean Sea). The objective was to identify the potential spawning areas of the larvae that settle in the known nursery grounds of the northern sector of the Strait of Sicily, thus quantifying the extent of the potential contribution to recruitment from the surrounding regions. Numerical simulations were performed over 11 years (2005–2015) and for two different periods (spring/summer and autumn/winter) corresponding to t…
Axisymmetric solutions for a chemotaxis model of Multiple Sclerosis
In this paper we study radially symmetric solutions for our recently proposed reaction–diffusion–chemotaxis model of Multiple Sclerosis. Through a weakly nonlinear expansion we classify the bifurcation at the onset and derive the amplitude equations ruling the formation of concentric demyelinating patterns which reproduce the concentric layers observed in Balò sclerosis and in the early phase of Multiple Sclerosis. We present numerical simulations which illustrate and fit the analytical results.
Two-dimensional Noncommutative Swanson Model and Its Bicoherent States
We introduce an extended version of the Swanson model, defined on a two-dimensional noncommutative space, which can be diagonalized exactly by making use of pseudo-bosonic operators. Its eigenvalues are explicitly computed and the biorthogonal sets of eigenstates of the Hamiltonian and of its adjoint are explicitly constructed.We also show that it is possible to construct two displacement-like operators from which a family of bi-coherent states can be obtained. These states are shown to be eigenstates of the deformed lowering operators, and their projector allows to produce a suitable resolution of the identity in a dense subspace of \(\mathcal{L}^\mathrm{2}\, (\mathbb{R}^\mathrm{2})\).
Predictive distribution models of European hake in the south-central Mediterranean Sea
The effective management and conservation of fishery resources requires knowledge of their spatial distribution and notably of their critical life history stages. Predictive modelling of the European hake (Merluccius merluccius L., 1758) distribution was developed in the south-central Mediterranean Sea by means of historical fisheries-independent databases available in the region. The study area included the international waters of the south-central Mediterranean Sea and the territorial waters of Italy, Malta, Tunisia and Libya. Distribution maps of predicted population abundance index, and probabilistic occurrence of recruits and large adults were obtained by means of generalized additive …
(H,ρ)-induced dynamics and large time behaviors
Abstract In some recent papers, the so called ( H , ρ ) -induced dynamics of a system S whose time evolution is deduced adopting an operatorial approach, borrowed in part from quantum mechanics, has been introduced. Here, H is the Hamiltonian for S , while ρ is a certain rule applied periodically (or not) on S . The analysis carried on throughout this paper shows that, replacing the Heisenberg dynamics with the ( H , ρ ) -induced one, we obtain a simple, and somehow natural, way to prove that some relevant dynamical variables of S may converge, for large t , to certain asymptotic values. This cannot be so, for finite dimensional systems, if no rule is considered. In this case, in fact, any …
The M.U.S.E. project: A nursing-centered MUltidimensional aSsessment of Elderly outpatient with comorbidities
Objective: Increasingly exacerbations of chronic diseases in frail elderly, causes reduction of patients' quality of life and lead to significant increases in resource utilization and cost to the health care system. A multidimensional and multidisciplinary assessment of an older person allows the identification of the level of stability or fragility of the patient, thereby determining a prognosis and a tailored therapeutic approach. Besides, the revaluation over time allows you to understand the evolution, the critical points of the natural history of the person, tailoring interventions to reduce the risk of disability, hospitalization, and death. The aim of our study is to implement a new …
Demyelination patterns in a mathematical model of multiple sclerosis.
In this paper we derive a reaction-diffusion-chemotaxis model for the dynamics of multiple sclerosis. We focus on the early inflammatory phase of the disease characterized by activated local microglia, with the recruitment of a systemically activated immune response, and by oligodendrocyte apoptosis. The model consists of three equations describing the evolution of macrophages, cytokine and apoptotic oligodendrocytes. The main driving mechanism is the chemotactic motion of macrophages in response to a chemical gradient provided by the cytokines. Our model generalizes the system proposed by Calvez and Khonsari (Math Comput Model 47(7–8):726–742, 2008) and Khonsari and Calvez (PLos ONE 2(1):e…
Progetto MAGIC: “L’informazione territoriale nella valutazione del rischio geologico in ambiente marino”. . In: Workshop GIS Day: "GIStales: di dati, persone e strumenti”.
MaGIC è un progetto quinquennale (2007-2012) finanziato dal Dipartimento Nazionale della Protezione Civile per l'acquisizione di dati morfobatimetrici ad alta risoluzione. Lo scopo principale del progetto è quello di definire e rappresentare i principali elementi morfologici dei fondali marini, in particolar modo quelli derivanti da dinamiche morfo-sedimentarie che implicano mobilità e/o instabilità dei sedimenti e conseguenti situazioni di pericolosità per le infrastrutture e le aree costiere urbanizzate. I rilievi morfobatimetrici vengono realizzati con un sistema ecoscandaglio radiale multifascio (Multibeam echosounder systems) calibrato ad hoc nell’area di lavoro e corretto in velocità …
Exceptional points in a non-Hermitian extension of the Jaynes-Cummings Hamiltonian
We consider a generalization of the non-Hermitian \({\mathcal PT}\) symmetric Jaynes-Cummings Hamiltonian, recently introduced for studying optical phenomena with time-dependent physical parameters, that includes environment-induced decay. In particular, we investigate the interaction of a two-level fermionic system (such as a two-level atom) with a single bosonic field mode in a cavity. The states of the two-level system are allowed to decay because of the interaction with the environment, and this is included phenomenologically in our non-Hermitian Hamiltonian by introducing complex energies for the fermion system. We focus our attention on the occurrence of exceptional points in the spec…
A Phenomenological Operator Description of Dynamics of Crowds: Escape Strategies
Abstract We adopt an operatorial method, based on creation, annihilation and number operators, to describe one or two populations mutually interacting and moving in a two-dimensional region. In particular, we discuss how the two populations, contained in a certain two-dimensional region with a non-trivial topology, react when some alarm occurs. We consider the cases of both low and high densities of the populations, and discuss what is changing as the strength of the interaction increases. We also analyze what happens when the region has either a single exit or two ways out.
(H, ρ)-induced dynamics and the quantum game of life
Abstract We propose an extended version of quantum dynamics for a certain system S , whose evolution is ruled by a Hamiltonian H, its initial conditions, and a suitable set ρ of rules, acting repeatedly on S . The resulting dynamics is not necessarily periodic or quasi-periodic, as one could imagine for conservative systems with a finite number of degrees of freedom. In fact, it may have quite different behaviors depending on the explicit forms of H, ρ as well as on the initial conditions. After a general discussion on this (H, ρ)-induced dynamics, we apply our general ideas to extend the classical game of life, and we analyze several aspects of this extension.
Dynamics for a quantum parliament
In this paper we propose a dynamical approach based on the Gorini-Kossakowski-Sudarshan-Lindblad equation for a problem of decision making. More specifically, we consider what was recently called a quantum parliament, asked to approve or not a certain law, and we propose a model of the connections between the various members of the parliament, proposing in particular some special form of the interactions giving rise to a {\em collaborative} or non collaborative behaviour.
Transition to turbulence and Singularity in Boundary Layer Theory
We compute the solutions of Prandtl’s and Navier- Stokes equations for the two dimensional flow induced by an array of periodic rectilinear vortices interacting with a boundary in the halfplane. This initial datum develops, in a finite time, a separation singularity for Prandtl’s equation. We investigate the different stages of unsteady separation in Navier-Stokes solutions for various Reynolds numbers. We show the presence of a large- scale interaction between viscous boundary layer and inviscid outer flow in all Re regimes, while the presence of a small-scale interaction is visible only for moderate-high Re numbers. We also investigate the asymptotic validity of boundary layer theory in t…
A spectral approach to a constrained optimization problem for the Helmholtz equation in unbounded domains
We study some convergence issues for a recent approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains (Ciraolo et al. in J Comput Phys 246:78–95, 2013) where the index of refraction is not required to be constant at infinity. The approach is based on the minimization of an integral functional, which arises from an integral formulation of the radiation condition at infinity. In this paper, we implement a Fourier–Chebyshev collocation method to study some convergence properties of the numerical algorithm; in particular, we give numerical evidence of some convergence estimates available in the literature (Ciraolo in Helmholtz equation in unbou…
Growth and geomorphic evolution of the Ustica volcanic complex at the Africa-Europe plate margin (Tyrrhenian Sea)
18 pages, 13 figures, 1 table
Projector operators in clustering
In a recent paper the notion of {\em quantum perceptron} has been introduced in connection with projection operators. Here we extend this idea, using these kind of operators to produce a {\em clustering machine}, i.e. a framework which generates different clusters from a set of input data. Also, we consider what happens when the orthonormal bases first used in the definition of the projectors are replaced by frames, and how these can be useful when trying to connect some noised signal to a given cluster.
High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex
Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investi…
Up-wind difference approximation and singularity formation for a slow erosion model
We consider a model for a granular flow in the slow erosion limit introduced in [31]. We propose an up-wind numerical scheme for this problem and show that the approximate solutions generated by the scheme converge to the unique entropy solution. Numerical examples are also presented showing the reliability of the scheme. We study also the finite time singularity formation for the model with the singularity tracking method, and we characterize the singularities as shocks in the solution.