0000000000588424

AUTHOR

Petri Juutinen

showing 14 related works from this author

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation

2011

In this paper, we give a new proof for the fact that the distributional weak solutions and the viscosity solutions of the $p$-Laplace equation $-\diver(\abs{Du}^{p-2}Du)=0$ coincide. Our proof is more direct and transparent than the original one by Juutinen, Lindqvist and Manfredi \cite{jlm}, which relied on the full uniqueness machinery of the theory of viscosity solutions. We establish a similar result also for the solutions of the non-homogeneous version of the $p$-Laplace equation.

Laplace's equationApplied MathematicsWeak solution010102 general mathematicsMathematical analysis01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsFOS: MathematicsUniqueness0101 mathematicsEquivalence (measure theory)AnalysisMathematicsAnalysis of PDEs (math.AP)Comm. in PDEs, vol.37
researchProduct

Equivalence of AMLE, strong AMLE, and comparison with cones in metric measure spaces

2006

MSC (2000) Primary: 31C35; Secondary: 31C45, 30C65 In this paper, we study the relationship between p-harmonic functions and absolutely minimizing Lipschitz extensions in the setting of a metric measure space (X, d, µ). In particular, we show that limits of p-harmonic functions (as p →∞ ) are necessarily the ∞-energy minimizers among the class of all Lipschitz functions with the same boundary data. Our research is motivated by the observation that while the p-harmonic functions in general depend on the underlying measure µ, in many cases their asymptotic limit as p →∞ turns out have a characterization that is independent of the measure. c

Discrete mathematicsGeneral MathematicsBoundary dataMetric mapLipschitz continuityMetric differentialEquivalence (measure theory)MathematicsMathematische Nachrichten
researchProduct

A theorem of Radò’s type for the solutions of a quasi-linear equation

2004

Laplace's equationPartial differential equationLinear differential equationDifferential equationGeneral MathematicsMathematical analysisFirst-order partial differential equationRiccati equationHeat equationUniversal differential equationMathematicsMathematical Research Letters
researchProduct

Principal eigenvalue of a very badly degenerate operator and applications

2007

Abstract In this paper, we define and investigate the properties of the principal eigenvalue of the singular infinity Laplace operator Δ ∞ u = ( D 2 u D u | D u | ) ⋅ D u | D u | . This operator arises from the optimal Lipschitz extension problem and it plays the same fundamental role in the calculus of variations of L ∞ functionals as the usual Laplacian does in the calculus of variations of L 2 functionals. Our approach to the eigenvalue problem is based on the maximum principle and follows the outline of the celebrated work of Berestycki, Nirenberg and Varadhan [H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operator…

Pure mathematicsApplied MathematicsMathematical analysisMathematics::Analysis of PDEsLipschitz continuityElliptic operatorOperator (computer programming)Maximum principleInfinity LaplacianMaximum principleInfinity LaplacianPrincipal eigenvalueUniquenessLaplace operatorEigenvalues and eigenvectorsAnalysisMathematicsJournal of Differential Equations
researchProduct

The ∞-Eigenvalue Problem

1999

. The Euler‐Lagrange equation of the nonlinear Rayleigh quotient \( \left(\int_{\Omega}|\nabla u|^{p}\,dx\right) \bigg/ \left(\int_{\Omega}|u|^{p}\,dx\right)\) is \( -\div\left( |\nabla u|^{p-2}\nabla u \right)= \Lambda_{p}^{p} |u |^{p-2}u,\) where \(\Lambda_{p}^{p}\) is the minimum value of the quotient. The limit as \(p\to\infty\) of these equations is found to be \(\max \left\{ \Lambda_{\infty}-\frac{|\nabla u(x)|}{u(x)},\ \ \Delta_{\infty}u(x)\right\}=0,\) where the constant \(\Lambda_{\infty}=\lim_{p\to\infty}\Lambda_{p}\) is the reciprocal of the maximum of the distance to the boundary of the domain Ω.

Mechanical EngineeringMathematical analysisMathematics::Analysis of PDEsOmegaCombinatoricsMathematics (miscellaneous)Infinity LaplacianDomain (ring theory)Nabla symbolRayleigh quotientAnalysisEigenvalues and eigenvectorsQuotientMathematicsArchive for Rational Mechanics and Analysis
researchProduct

Removability of a Level Set for Solutions of Quasilinear Equations

2005

In this paper, we study the removability of a level set for the solutions of quasilinear elliptic and parabolic equations of the second order. We show, under rather general assumptions on the coeff...

Partial differential equationDifferential equationIndependent equationApplied MathematicsMathematical analysisMathematics::Analysis of PDEsParabolic partial differential equationEuler equationssymbols.namesakeMethod of characteristicsElliptic partial differential equationsymbolsHyperbolic partial differential equationAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

A tour of the theory of absolutely minimizing functions

2004

A detailed analysis of the class of absolutely minimizing functions in Euclidean spaces and the relationship to the infinity Laplace equation

Class (set theory)Pure mathematicsHarnack's principleApplied MathematicsGeneral MathematicsInfinity LaplacianEuclidean geometryCalculusHarnack's inequalityMathematicsBulletin of the American Mathematical Society
researchProduct

The boundary Harnack inequality for infinity harmonic functions in Lipschitz domains satisfying the interior ball condition

2008

Abstract In this note, we give a short proof for the boundary Harnack inequality for infinity harmonic functions in a Lipschitz domain satisfying the interior ball condition. Our argument relies on the use of quasiminima and the notion of comparison with cones.

Harnack's principleLipschitz domainHarmonic functionApplied MathematicsMathematical analysisMathematics::Analysis of PDEsBall (mathematics)Lipschitz continuityAnalysisMathematicsHarnack's inequalityNonlinear Analysis: Theory, Methods &amp; Applications
researchProduct

Decay estimates in the supremum norm for the solutions to a nonlinear evolution equation

2014

We study the asymptotic behaviour, as t → ∞, of the solutions to the nonlinear evolution equationwhere ΔpNu = Δu + (p−2) (D2u(Du/∣Du∣)) · (Du/∣Du∣) is the normalized p-Laplace equation and p ≥ 2. We show that if u(x,t) is a viscosity solution to the above equation in a cylinder Ω × (0, ∞) with time-independent lateral boundary values, then it converges to the unique stationary solution h as t → ∞. Moreover, we provide an estimate for the decay rate of maxx∈Ω∣u(x,t) − h(x)∣.

Uniform normGeneral MathematicsMathematical analysista111CylinderViscosity solutionNonlinear evolutionStationary solutionnonlinear evolution equationBoundary valuesMathematicsProceedings of the Royal Society of Edinburgh, Section: A Mathematics
researchProduct

Discontinuous Gradient Constraints and the Infinity Laplacian

2012

Motivated by tug-of-war games and asymptotic analysis of certain variational problems, we consider a gradient constraint problem involving the infinity Laplace operator. We prove that this problem always has a solution that is unique if a certain regularity condition on the constraint is satisfied. If this regularity condition fails, then solutions obtained from game theory and $L^p$-approximation need not coincide.

Asymptotic analysisGeneral Mathematicsta111010102 general mathematicsMathematical analysisinfinity Laplace operator01 natural sciences010101 applied mathematicsConstraint (information theory)Mathematics - Analysis of PDEsOperator (computer programming)Infinity LaplacianFOS: Mathematics0101 mathematicsGame theorygradient constraint problemsAnalysis of PDEs (math.AP)MathematicsInternational Mathematics Research Notices
researchProduct

On the definition of viscosity solutions for parabolic equations

2001

In this short note we suggest a refinement for the definition of viscosity solutions for parabolic equations. The new version of the definition is equivalent to the usual one and it better adapts to the properties of parabolic equations. The basic idea is to determine the admissibility of a test function based on its behavior prior to the given moment of time and ignore what happens at times after that.

Moment (mathematics)Applied MathematicsGeneral MathematicsViscosity (programming)Mathematical analysisMathematicsofComputing_NUMERICALANALYSISTest functions for optimizationCalculusParabolic partial differential equationMathematicsProceedings of the American Mathematical Society
researchProduct

Convex functions on Carnot Groups

2007

We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.

Convex analysisPure mathematicsCarnot groupsubelliptic equations.49L25Mathematics::Complex VariablesGeneral MathematicsMathematical analysissubelliptic equationsMathematics::Analysis of PDEsHorizontal convexityviscosity convexity35J70Convexitysymbols.namesakeCarnot groupsHomogeneous35J67Convex optimizationsymbolsPoint (geometry)Carnot cycleConvex function22E30Mathematics
researchProduct

Ai niin, tää oli tää juttu!

2017

verkkokurssitmatematiikkaoppiminenverkko-opetus
researchProduct