0000000000599125
AUTHOR
Salvatore Lorenzo
Reading a qubit quantum state with a quantum meter: time unfolding of quantum Darwinism and quantum information flux
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours
Quantum-state transfer via resonant tunneling through local-field-induced barriers
Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by application of local magnetic fields on the second and last-but-one spins, respectively. These effective barriers induce the appearance of two eigenstates, bilocalized at the edges of the chain, which allow a high-quality transfer also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled qubit pair) from one to the other end of the chain. DOI: 10.1103/PhysRevA.87.042313
Bending test for capturing the fractional visco-elastic parameters: theoretical and experimental investigation on giant reeds
In this paper attention is devoted on searching a proper model for characterizing the behavior of giant reeds. To aim at this, firstly, meticulous experimental tests have been performed in the Laboratory of structural materials of University of Palermo. Further, the novel aspect of this paper is that of using an advanced Euler-Bernoulli model to fit experimental data of bending tests. Such a model of continuum beam takes into account different constitutive laws of visco-elasticity, being real materials visco-elastic.
Quantum collision models: Open system dynamics from repeated interactions
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…
Heat flux dynamics in dissipative cascaded systems
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the …
Collisional picture of quantum optics with giant emitters
The effective description of the weak interaction between an emitter and a bosonic field as a sequence of two-body collisions provides a simple intuitive picture compared to traditional quantum optics methods as well as an effective calculation tool of the joint emitter-field dynamics. Here, this collisional approach is extended to many emitters (atoms or resonators), each generally interacting with the field at many coupling points ("giant" emitter). In the regime of negligible delays, the unitary describing each collision in particular features a contribution of a chiral origin resulting in an effective Hamiltonian. The picture is applied to derive a Lindblad master equation (ME) of a set…
Spin chains for two-qubit teleportation
Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is able to sustain the generation of two pairs of Bell states - possibly shared between a sender and a distant receiver - which can in turn enable two-qubit teleportation. In particular, we address a spin-1/2 chain with XX interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has vanishing inf…
The role of environmental correlations in the non-Markovian dynamics of a spin system
We put forward a framework to study the dynamics of a chain of interacting quantum particles affected by individual or collective multi-mode environment, focussing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environmental system magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as entanglement and purity that are not observed under a separable multi-mode environment. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.
Composite quantum collision models
A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir $\mathcal R$ as consisting of a large collection of elementary ancillas: the dynamics of the open system $\mathcal{S}$ results from successive "collisions" of $\mathcal{S}$ with the ancillas of $\mathcal R$. Here, we present a general formulation of memoryless {\it composite} CMs, where $\mathcal S$ is partitioned into the very open system under study $S$ coupled to one or more auxiliary systems $\{S_i\}$. Their composite dynamics occurs through internal $S$-$\{S_i\}$ collisions interspersed with external ones involving $\{S_i\}$ and the reservoir $\mathcal R$. W…
Role of information backflow in the emergence of quantum Darwinism
Quantum Darwinism attempts to explain the emergence of objective reality of the state of a quantum system in terms of redundant information about the system acquired by independent non interacting fragments of the environment. The consideration of interacting environmental elements gives rise to a rich phenomenology, including the occurrence of non-Markovian features, whose effects on objectification {\it a' la} quantum Darwinism needs to be fully understood. We study a model of local interaction between a simple quantum system and a multi-mode environment that allows for a clear investigation of the interplay between information trapping and propagation in the environment and the emergence…
Competition between memory-keeping and memory-erasing decoherence channels
We study the competing effects of simultaneous Markovian and non-Markovian decoherence mechanisms acting on a single spin. We show the existence of a threshold in the relative strength of such mechanisms above which the spin dynamics becomes fully Markovian, as revealed by the use of several non-Markovianity measures. We identify a measure-dependent nested structure of such thresholds, hinting at a causality relationship among the various non-Markovianity witnesses used in our analysis. Our considerations are then used to argue the unavoidably non-Markovian evolution of a single-electron quantum dot exposed to both intrinsic and Markovian technical noise, the latter of arbitrary strength.
Transport of Quantum Correlations across a spin chain
Some of the recent developments concerning the propagation of quantum correlations across spin channels are reviewed. In particular, we focus on the improvement of the transport efficiency obtained by the manipulation of few energy parameters (either end-bond strengths or local magnetic fields) near the sending and receiving sites. We give a physically insightful description of various such schemes and discuss the transfer of both entanglement and of quantum discord.
Microscopic biasing of discrete-time quantum trajectories
We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…
Quantum Critical Scaling under Periodic Driving
Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…
Quantum scrambling via accessible tripartite information
Quantum information scrambling (QIS), from the perspective of quantum information theory, is generally understood as local non-retrievability of information evolved through some dynamical process, and is often quantified via entropic quantities such as the tripartite information. We argue that this approach comes with a number of issues, in large part due to its reliance on quantum mutual informations, which do not faithfully quantify correlations directly retrievable via measurements, and in part due to the specific methodology used to compute tripartite informations of the studied dynamics. We show that these issues can be overcome by using accessible mutual informations, defining corresp…
Quantum synchronisation and clustering in chiral networks
We study the emergence of synchronisation in a chiral network of harmonic oscillators. The network consists of a set of locally incoherently pumped harmonic oscillators coupled pairwise in cascade with travelling field modes. Such cascaded coupling leads to feedback-less dissipative interaction between the harmonic oscillators of the pair which can be described in terms of an effective pairwise hamiltonian a collective pairwise decay. The network is described mathematically in terms of a directed graph. By analysing geometries of increasing complexity we show how the onset of synchronisation depends strongly on the network topology, with the emergence of synchronised communities in the case…
Quantum correlations in PT -symmetric systems
Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…
Quantum state transfer with ultracold atoms in optical lattices
Ultracold atoms can be used to perform quantum simulations of a variety of condensed matter systems, including spin systems. These progresses point to the implementation of the manipulation of quantum states and to observe and exploit the effect of quantum correlations. A natural direction along this line is provided by the possibility to perform quantum state transfer (QST). After presenting a brief discussion of the simulation of quantum spin chains with ultracold gases and reminding the basic facts of QST, we discuss how to potentially use the tools of present-day ultracold technology to implement the QST between two regions of the atomic system (the sender and the receiver). The fidelit…
Intermittent decoherence blockade
It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…
Non-Markovian dynamics from band edge effects and static disorder
It was recently shown [S. Lorenzo et al., Sci. Rep. 7, 42729 (2017)] that the presence of static disorder in a bosonic bath - whose normal modes thus become all Anderson-localised - leads to non-Markovianity in the emission of an atom weakly coupled to it (a process which in absence of disorder is fully Markovian). Here, we extend the above analysis beyond the weak-coupling regime for a finite-band bath so as to account for band edge effects. We study the interplay of these with static disorder in the emergence of non-Markovian behaviour in terms of a suitable non-Markovianity measure.
Orthogonality Catastrophe and Decoherence in a Trapped-Fermion Environment
The Fermi edge singularity and the Anderson orthogonality catastrophe describe the universal physics which occurs when a Fermi sea is locally quenched by the sudden switching of a scattering potential, leading to a brutal disturbance of its ground state. We demonstrate that the effect can be seen in the controllable domain of ultracold trapped gases by providing an analytic description of the out-of-equilibrium response to an atomic impurity, both at zero and at finite temperature. Furthermore, we link the transient behavior of the gas to the decoherence of the impurity, and, in particular to the amount of non-markovianity of its dynamics.
Multipartite entanglement transfer in spin chains
We investigate the transfer of genuine multipartite entanglement across a spin-1/2 chain with nearest-neighbor XX-type interaction. We focus on the perturbative regime, where a block of spins is weakly coupled at each edge of a quantum wire, embodying the role of a multiqubit sender and receiver, respectively. We find that high-quality multipartite entanglement transfer is achieved at the same time that three excitations are transferred to the opposite edge of the chain. Moreover, we find that both a finite concurrence and tripartite negativity is attained at much shorter time, making GHZ-distillation protocols feasible. Finally, we investigate the robustness of our protocol with respect to…
Landauer’s Principle in Multipartite Open Quantum System Dynamics
We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evol…
Remnants of Anderson localization in prethermalization induced by white noise
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing that the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermedia…
Heat flux and quantum correlations in dissipative cascaded systems
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system $S$ is globally Lindbladian, one of the subsystems ``sees'' the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at th…
Geometrical characterization of non-Markovianity
We introduce a new tool for the quantitative characterisation of the departure form Markovianity of a given dynamical process. Our tool can be applied to a generic $N$-level system and extended straightforwardly to Gaussian continuous-variable systems. It is linked to the change of the volume of physical states that are dynamically accessible to a system and provides qualitative expectations in agreement with some of the analogous tools proposed so far. We illustrate its prediticve power by tackling a few canonical examples.
Variational Gibbs State Preparation on NISQ devices
The preparation of an equilibrium thermal state of a quantum many-body system on noisy intermediate-scale (NISQ) devices is an important task in order to extend the range of applications of quantum computation. Faithful Gibbs state preparation would pave the way to investigate protocols such as thermalization and out-of-equilibrium thermodynamics, as well as providing useful resources for quantum algorithms, where sampling from Gibbs states constitutes a key subroutine. We propose a variational quantum algorithm (VQA) to prepare Gibbs states of a quantum many-body system. The novelty of our VQA consists in implementing a parameterized quantum circuit acting on two distinct, yet connected, q…
Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe
We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system.
Topological Protection and Control of Quantum Markovianity
This article belongs to the Special Issue Topological Photonics.
Transfer of arbitrary two-qubit states via a spin chain
We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 8…
Many-qubit quantum state transfer via spin chains
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induc…
Bending test for capturing the vivid behavior of giant reeds, returned through a proper fractional visco-elastic model
Abstract This paper presents results of experimental investigations made to evaluate the vivid behavior of giant reed Arundo donax. In particular, attention was paid to the relationship between visco-elastic properties and moisture content, which is widely recognized as one of the key factor that influences the mechanical properties of all wood-based materials. To this aim, after a controlled drying treatment on samples of reed, stress relaxation tests in three point bending configuration were performed to evaluate the effects of moisture content on visco-elastic behavior of the giant reed. Further, the novel aspect of this paper is that of using an Euler–Bernoulli model embedded with an ad…
Routing quantum information in spin chains
Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.
2-qubit quantum state transfer in spin chains and cold atoms with weak links
In this paper we discuss the implementation of 2-qubit quantum state transfer (QST) in inhomogeneous spin chains where the sender and the receiver blocks are coupled through the bulk channel via weak links. The fidelity and the typical timescale of the QST are discussed as a function of the parameters of the weak links. Given the possibility of implementing with cold atoms in optical lattices a variety of condensed matter systems, including spin systems, we also discuss the possible implementation of the discussed 2-qubit QST with cold gases with weak links, together with a discussion of the applications and limitations of the presented results.
Perturbative many-body transfer
The transfer of excitations between different locations of a quantum many-body system is of primary importance in many research areas, from transport properties in spintronics and atomtronics to quantum state transfer in quantum information processing. We address the transfer of n > 1 bosonic and fermionic excitations between the edges of a one-dimensional chain modelled by a quadratic hopping Hamiltonian, where the block edges, embodying the sender and the receiver sites, are weakly coupled to the quantum wire. We find that perturbative high-quality transfer is attainable in the weak-coupling limit, for both bosons and fermions, only for certain modular arithmetic equivalence classes of th…
Class of exact memory-kernel master equations
A well-known situation in which a non-Markovian dynamics of an open quantum system $S$ arises is when this is coherently coupled to an auxiliary system $M$ in contact with a Markovian bath. In such cases, while the joint dynamics of $S$-$M$ is Markovian and obeys a standard (bipartite) Lindblad-type master equation (ME), this is in general not true for the reduced dynamics of $S$. Furthermore, there are several instances (\eg the dissipative Jaynes-Cummings model) in which a {\it closed} ME for the $S$'s state {\it cannot} even be worked out. Here, we find a class of bipartite Lindblad-type MEs such that the reduced ME of $S$ can be derived exactly and in a closed form for any initial produ…
Quantum non-Markovianity induced by Anderson localization
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence when an atom interacts with a disordered lattice one indeed observes, a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by rele…
Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism
We combine the collisional picture for open system dynamics and the control of the rate of decoherence provided by the quantum (anti-)Zeno effect to illustrate the temporal unfolding of the redundant encoding of information into a multipartite environment that is at the basis of Quantum Darwinism, and to control it. The rate at which such encoding occurs can be enhanced or suppressed by tuning the dynamical conditions of system-environment interaction in a suitable and remarkably simple manner. This would help the design of a new generation of quantum experiments addressing the elusive phenomenology of Quantum Darwinism and thus its characterization.
Intermittent decoherence blockade in a chiral ring environment
It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…
Exotic interactions mediated by a non-Hermitian photonic bath
Photon-mediated interactions between quantum emitters in engineered photonic baths is an emerging area of quantum optics. At the same time, non-Hermitian (NH) physics is currently thriving, spurred by the exciting possibility to access new physics in systems ruled by non-trivial NH Hamiltonians - in particular photonic lattices - which can challenge longstanding tenets such as the Bloch theory of bands. Here, we combine these two fields and study the exotic interaction between emitters mediated by the photonic modes of a lossy photonic lattice described by a NH Hamiltonian. We show in a paradigmatic case study that structured losses in the field can seed exotic emission properties. Photons …
Quantum Non-Markovian Piecewise Dynamics from Collision Models
Recently, a large class of quantum non-Markovian piecewise dynamics for an open quantum system obeying closed evolution equations has been introduced [B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016)]. These dynamics have been defined in terms of a waiting-time distribution between quantum jumps, along with quantum maps describing the effect of jumps and the system's evolution between them. Here, we present a quantum collision model with memory, whose reduced dynamics in the continuous-time limit reproduces the above class of non-Markovian piecewise dynamics, thus providing an explicit microscopic realization.
Fractional visco-elastic Timoshenko beam from elastic Euler-Bernoulli beam
The Euler–Bernoulli beam theory is well established in such a way that engineers are very confident with the determination of the stress field or deflections of the elastic beam based on this theory. In contrast, Timoshenko theory is not so much used by engineers. However, in some cases, Euler–Bernoulli theory, which neglects the effect of transversal shear deformation, yields unacceptable results. For instance, when dealing with visco-elastic behavior, shear deformations play a fundamental role. Recent studies on the response evaluation of a visco-elastic Euler–Bernoulli beam under quasi-static and dynamic loads have been stressed that for better capturing of the visco-elastic behavior, a …
Fractional visco-elastic Timoshenko beam deflection via single equation
SUMMARY This paper deals with the response determination of a visco-elastic Timoshenko beam under static loading condition and taking into account fractional calculus. In particular, the fractional derivative terms arise from representing constitutive behavior of the visco-elastic material. Further, taking advantages of the Mellin transform method recently developed for the solution of fractional differential equation, the problem of fractional Timoshenko beam model is assessed in time domain without invoking the Laplace-transforms as usual. Further, solution provided by the Mellin transform procedure will be compared with classical Central Difference scheme one, based on the Grunwald–Letni…
On the Dynamics of Fractional Visco-Elastic Beams
With increasing advanced manufacturing process, visco-elastic materials are very attractive for mitigation of vibrations, provided that you may have advanced studies for capturing the realistic behavior of such materials. Experimental verification of the visco-elastic behavior is limited to some well-known low order models as the Maxwell or Kelvin models. However, both models are not sufficient to model the visco-elastic behavior of real materials, since only the Maxwell type can capture the relaxation tests and the Kelvin the creep tests, respectively. Very recently, it has been stressed that the most suitable model for capturing the visco-elastic behavior is the spring-pot, characterized …
Tuning non-Markovianity by spin-dynamics control
We study the interplay between forgetful and memory-keeping evolution enforced on a two-level system by a multi-spin environment whose elements are coupled to local bosonic baths. Contrarily to the expectation that any non-Markovian effect would be buried by the forgetful mechanism induced by the spin-bath coupling, one can actually induce a full Markovian-to-non-Markovian transition of the two-level system's dynamics, controllable by parameters such as the mismatch between the energy of the two-level system and of the spin environment. For a symmetric coupling, the amount of non-Markovianity surprisingly grows with the number of decoherence channels.
Reading a Qubit Quantum State with a Quantum Meter: Time Unfolding of Quantum Darwinism and Quantum Information Flux
Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.
Stochastic Response Of Fractionally Damped Beams
Abstract This paper aims at introducing the governing equation of motion of a continuous fractionally damped system under generic input loads, no matter the order of the fractional derivative. Moreover, particularizing the excitation as a random noise, the evaluation of the power spectral density performed in frequency domain highlights relevant features of such a system. Numerical results have been carried out considering a cantilever beam under stochastic loads. The influence of the fractional derivative order on the power spectral density response has been investigated, underscoring the damping effect in reducing the power spectral density amplitude for higher values of the fractional de…
Quantum jump statistics with a shifted jump operator in a chiral waveguide
Resonance fluorescence, consisting of light emission from an atom driven by a classical oscillating field, is well-known to yield a sub-Poissonian photon counting statistics. This occurs when only emitted light is detected, which corresponds to a master equation (ME) unraveling in terms of the canonical jump operator describing spontaneous decay. Formally, an alternative ME unraveling is possible in terms of a shifted jump operator. We show that this shift can result in sub-Poissonian, Poissonian or super-Poissonian quantum jump statistics. This is shown in terms of the Mandel Q parameter in the limit of long counting times, which is computed through large deviation theory. We present a wav…
Witnessing nonclassicality through large deviations in quantum optics
Non-classical correlations in quantum optics as resources for quantum computation are important in the quest for highly-specialized quantum devices. The standard way to investigate such effects relies on either the characterization of the inherent features of sources and circuits or the study of the output radiation of a given optical setup. The latter approach demands an extensive description of the output fields, but often overlooks the dynamics of the sources. Conversely, the former discards most of the information about the single trajectories, which are observed in experimental measurements. In this work we provide a natural link between the two frameworks by exploiting the thermodynam…