0000000000614773

AUTHOR

Michael Heuken

showing 4 related works from this author

Elemental distribution and structural characterization of GaN/InGaN core-shell single nanowires by Hard X-ray synchrotron nanoprobes

2019

Improvements in the spatial resolution of synchrotron-based X-ray probes have reached the nano-scale and they, nowadays, constitute a powerful platform for the study of semiconductor nanostructures and nanodevices that provides high sensitivity without destroying the material. Three complementary hard X-ray synchrotron techniques at the nanoscale have been applied to the study of individual nanowires (NWs) containing non-polar GaN/InGaN multi-quantum-wells. The trace elemental sensitivity of X-ray fluorescence allows one to determine the In concentration of the quantum wells and their inhomogeneities along the NW. It is also possible to rule out any contamination from the gold nanoparticle …

DiffractionPhotoluminescenceMaterials scienceGeneral Chemical EngineeringNanowireNanoparticleSemiconductor nanowires02 engineering and technology01 natural sciencesArticlelaw.inventionlcsh:ChemistrySynchrotron probesnano-scale resolutionlaw0103 physical sciencesNano-scale resolutionGeneral Materials ScienceNanoscopic scaleQuantum wellsemiconductor nanowires010302 applied physicsbusiness.industryNanotecnologia021001 nanoscience & nanotechnologySynchrotron3. Good healthlcsh:QD1-999synchrotron probesOptoelectronicsQuantum efficiencyMaterials nanoestructurats0210 nano-technologybusiness
researchProduct

Strain relaxation, extended defects and doping effects in InxGa1-xN/GaN heterostructures investigated by surface photovoltage

2020

Abstract We have analysed electrical properties of extended defects and interfaces in fully strained and partially relaxed InxGa1-xN/GaN heterostructures by means of Kelvin probe force microscopy and surface photovoltage spectroscopy. The study highlights the role of indium incorporation and Si doping levels on the charge state of extended defects including threading dislocations, V defects and misfit dislocations. Surface potential maps reveal that these defects are associated with a different local work function and thus could remarkably alter electron-hole recombination mechanisms of InxGa1-xN/GaN layers locally. Surface photovoltage spectra clearly demonstrate the role of misfit disloca…

Materials scienceSurface photovoltageGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistryKelvin probe force microscopy01 natural sciencesSurface photovoltage spectroscopyWork functionSpectroscopyKelvin probe force microscopeCondensed matter physicsInxGa1-xN/GaN heterostructureRelaxation (NMR)DopingHeterojunctionSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and Filmschemistry0210 nano-technologyIndium
researchProduct

Surface properties of AlInGaN/GaN heterostructure

2016

Abstract Surface structural, electronic and electrical properties of the quaternary alloy AlInGaN/GaN heterostructures are investigated. Surface termination, atomic arrangement, electronic and electrical properties of the (0001) surface and (10–11) V-defect facets have been experimentally analyzed using various surface sensitive techniques including spectroscopy and microscopy. Moreover, the effect of sub-band gap (of the barrier layer) illumination on contact potential difference (VCPD) and the role of oxygen chemisorption have been studied.

Materials sciencechemistry.chemical_elementCondensed Matter Physic02 engineering and technologyKelvin probe force microscopy01 natural sciencesOxygenlaw.inventionBarrier layerlaw0103 physical sciencesMicroscopyMechanics of MaterialGeneral Materials ScienceScanning tunneling microscopySpectroscopy010302 applied physicsV-defectbusiness.industryMechanical EngineeringHeterojunctionAlInGaN/GaNCiència dels materials021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicroscòpiachemistryMechanics of MaterialsChemisorptionOptoelectronicsMaterials Science (all)Scanning tunneling microscope0210 nano-technologybusinessVolta potentialMaterials Science in Semiconductor Processing
researchProduct

The controlled growth of GaN microrods on Si(111) substrates by MOCVD

2015

Abstract In this paper, a selective area growth (SAG) approach for growing GaN microrods on patterned SiN x /Si(111) substrates by metal-organic chemical vapor deposition (MOCVD) is studied. The surface morphology, optical and structural properties of vertical GaN microrods terminated by pyramidal shaped facets (six { 10 1 ¯ 1 } planes) were characterized using scanning electron microscopy (SEM), room temperature photoluminescence (PL) and Raman spectroscopy, respectively. Measurements revealed high-quality GaN microcolumns grown with silane support. Characterized structures were grown nearly strain-free (central frequency of Raman peak of 567±1 cm −1 ) with crystal quality comparable to bu…

Materials sciencePhotoluminescenceScanning electron microscopebusiness.industryNanotechnologyChemical vapor depositionCondensed Matter PhysicsSilaneInorganic ChemistryCrystalFull width at half maximumsymbols.namesakechemistry.chemical_compoundchemistryMaterials ChemistrysymbolsOptoelectronicsMetalorganic vapour phase epitaxybusinessRaman spectroscopyJournal of Crystal Growth
researchProduct