0000000000626929

AUTHOR

Angélique Besson-bard

Présentation du métier de chercheur dans le cadre de "Les filles et la Science"

International audience

research product

Current view of nitric oxide-responsive genes in plants

International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive …

research product

Nitric oxide inhibits the ATPase activity of the chaperone-like AAA+ ATPase CDC48, a target for S-nitrosylation in cryptogein signalling in tobacco cells

NO has important physiological functions in plants, including the adaptative response to pathogen attack. We previously demonstrated that cryptogein, an elicitor of defence reaction produced by the oomycete Phytophthora cryptogea , triggers NO synthesis in tobacco. To decipher the role of NO in tobacco cells elicited by cryptogein, in the present study we performed a proteomic approach in order to identify proteins undergoing S-nitrosylation. We provided evidence that cryptogein induced the S-nitrosylation of several proteins and identified 11 candidates, including CDC48 (cell division cycle 48), a member of the AAA+ ATPase (ATPase associated with various cellular activities) family. In vit…

research product

Electrochemical detection of nitric oxide in plant cell suspensions

SPE IPM UB; Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

research product

The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions

SPE EA BIOME IPM UB INRA; International audience; Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Rema…

research product

Protein S-nitrosylation: specificity and identification strategies in plants

SPE Pôle IPM UB; International audience; The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the biotin switch technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identi…

research product

S-nitrosylation: An emerging post-translational protein modification in plants

International audience; Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-n…

research product

Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

Abstract Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd2+), a nonessential and toxic metal. We demonstrate that Cd2+ induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd2+. By analyzing the incidence of NO scavenging or inhibition …

research product

Le monoxyde d’azote

Le monoxyde d’azote (NO) est un mediateur physiologique associe a divers processus chez les animaux, dont l’immunite. Des travaux conduits recemment montrent que les plantes, confrontees a l’attaque d’agents pathogenes, produisent egalement du NO. Le NO est donc un acteur des voies de signalisation cellulaire activees en reponse a la reconnaissance par les plantes d’agresseurs exterieurs. L’etude des molecules cibles du NO et, plus particulierement, la caracterisation de proteines S-nitrosylees, a permis d’avoir un premier apercu des mecanismes fins inherents a ses fonctions. Le NO serait ainsi implique dans l’activation ainsi que dans la desensibilisation des voies de signalisation mobilis…

research product

Identification and functional characterization of S-nitrosated proteins from Klebsormidium nitens

The small gaseous molecule nitric oxide (NO) is well established as a major ubiquitous component of cell signalling. A key signalling mechanism mediating NO effects is S-nitrosation, a post-translational modification by which NO can impact the target protein activities, subcellular localizations and capacities to form protein complexes. The identification of proteins targeted by NO is of major interest in order to elucidate NO functions. Interestingly, land plants lack NO synthase (NOS), which is the main enzyme for NO synthesis in metazoans, while a few algal species possess it, thus raising many interrogations. Therefore, we focused on the identification of S-nitrosated proteins during sa…

research product

NO contributes to cadmium toxicity in Arabidopsis thaliana by mediating an iron deprivation response

Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of …

research product

Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses

International audience; It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular N…

research product

S-Nitrosation of Arabidopsis thaliana Protein Tyrosine Phosphatase 1 Prevents Its Irreversible Oxidation by Hydrogen Peroxide

Tyrosine-specific protein tyrosine phosphatases (Tyr-specific PTPases) are key signaling enzymes catalyzing the removal of the phosphate group from phosphorylated tyrosine residues on target proteins. This post-translational modification notably allows the regulation of mitogen-activated protein kinase (MAPK) cascades during defense reactions. Arabidopsis thaliana protein tyrosine phosphatase 1 (AtPTP1), the only Tyr-specific PTPase present in this plant, acts as a repressor of H2O2 production and regulates the activity of MPK3/MPK6 MAPKs by direct dephosphorylation. Here, we report that recombinant histidine (His)-AtPTP1 protein activity is directly inhibited by H2O2 and nitric oxide (NO) …

research product

NO Signalling in Plant Immunity

The importance of nitric oxide (NO) in innate and adaptive immunity in mammals is well recognised. NO exerts antimicrobial properties against invaders but also displays immunoregulatory functions in which S-nitrosylation represents a signalling process of major importance. Over the last two decades, a growing body of evidence suggests that NO is also a major component of plant immunity. Our understanding of its role in plant defence has been enriched by the identification and functional analysis of S-nitrosylated proteins. The recent identification of new S-nitrosylated proteins including the chaperone-like enzyme cell division cycle 48 (CDC48), histone deacetylases (HDACs) and calmodulin (…

research product

Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco

SPEIPMUBINRASUPDATDOCT; Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both th…

research product

Arabidopsis thaliana nicotianamine synthase 4 is required for proper response to iron deficiency and to cadmium exposure.

International audience; The nicotianamine synthase (NAS) enzymes catalyze the formation of nicotianamine (NA), a non-proteinogenic amino acid involved in iron homeostasis. We undertook the functional characterization of AtNAS4, the fourth member of the Arabidopsis thaliana NAS gene family. A mutant carrying a T-DNA insertion in AtNAS4 (atnas4), as well as lines overexpressing AtNAS4 both in the atnas4 and the wild-type genetic backgrounds, were used to decipher the role of AtNAS4 in NA synthesis, iron homeostasis and the plant response to iron deficiency or cadmium supply. We showed that AtNAS4 is an important source for NA. Whereas atnas4 had normal growth in iron-sufficient medium, it dis…

research product

Nitric Oxide Signalling in Plants: Cross-Talk With Ca2+, Protein Kinases and Reactive Oxygen Species

International audience; Nitric oxide (NO) is a gaseous free radical recognized as a ubiquitous signal transducer that contributes to various biological processes in animals. It exerts most of its effects by regulating the activities of various proteins including Ca2+ channels, protein kinases and transcription factors. In plants, studies conducted over the past ten years revealed that NO also functions as an endogenous mediator in diverse physiological processes ranging from root development to stomatal closure. Its biological role as an intracellular plant messenger molecule, however, remains poorly understood. Here, we review the molecular basis of NO signaling in animals and discuss curr…

research product

Identification and functional characterization of S-nitrosated proteins from Klebsormidium nitens in response to salt stress

The small gaseous molecule nitric oxide (NO) is well established as a major ubiquitouscomponent of cell signalling. A key signalling mechanism mediating NO effects is Snitrosation, a post-translational modification by which NO can impact the target proteinactivities, subcellular localizations, and capacities to form protein complexes. The identificationof proteins targeted by NO is of major interest in order to elucidate NO functions. Interestingly,land plants lack NO synthase (NOS), which is the main enzyme for NO synthesis in metazoans,while a few algal species possess it, thus raising many interrogations. Therefore, we focused onthe identification of S-nitrosated proteins during salt str…

research product

Protein S-nitrosylation: What's going on in plants?

International audience; Nitric oxide (NO) is now recognized as a key regulator of plant physiological processes. Understanding the mechanisms by which NO exerts its biological functions has been the subject of extensive research. Several components of the signaling pathways relaying NO effects in plants, including second messengers, protein kinases, phytohormones, and target genes, have been characterized. In addition, there is now compelling experimental evidence that NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation and tyrosine nitration. Recently, proteome-wide scale analyses led to the identification of numerous protein candidates for S-…

research product

Nitric oxide production and signalling in algae

International audience

research product

Nitric oxide signaling in plants: cross-talk with Ca2+, protein kinases and reactive oxygen species

research product

There's More to the Picture Than Meets the Eye: Nitric Oxide Cross Talk with Ca2+ Signaling

Abstract Calcium and nitric oxide (NO) are two important biological messengers. Increasing evidence indicates that Ca2+ and NO work together in mediating responses to pathogenic microorganisms and microbe-associated molecular patterns. Ca2+ fluxes were recognized to account for NO production, whereas evidence gathered from a number of studies highlights that NO is one of the key messengers mediating Ca2+ signaling. Here, we present a concise description of the current understanding of the molecular mechanisms underlying the cross talk between Ca2+ and NO in plant cells exposed to biotic stress. Particular attention will be given to the involvement of cyclic nucleotide-gated ion channels and…

research product

Les femmes, les sciences et l’Europe. Intervention à la conférence-débat

National audience

research product

Importance de la diversité des Pseudomonas rhizosphériques et de celle de leurs sidérophores dans la nutrition en fer de la plante hôte

research product

Nitric oxide and glutathione impact the expression of iron uptake- and iron transport-related genes as well as the content of metals in A. thaliana plants grown under iron deficiency

International audience; Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron deficiency responses through the upregulation of the expression of iron uptake-related genes. Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product of GSNO, triggered the upregulation of the expression of iron uptake- and transport-related gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by GSNO did not improve the root iron co…

research product

NO signaling in plant immunity: A tale of messengers

International audience; Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca2+. Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-transl…

research product

β-Aminobutyric Acid (BABA)-Induced Resistance in Arabidopsis thaliana: Link with Iron Homeostasis

International audience; Bêta-Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and confirmed that BABA is able to chelate iron (Fe) in vitro. In vivo, we showed that it led to a transient Fe deficiency response in Arabidopsis thaliana plants exemplified by a reduction of ferritin accumulation and disturbances in the expression of genes related to Fe homeostasis. This response was not correlated to changes in Fe concentrations, suggesting that BABA affects the…

research product

Nitric Oxide in Plants: Production and Cross-talk with Ca2+ Signaling

International audience; Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can …

research product