0000000000637255
AUTHOR
Alexander Kaiser
Investigating spintronics thin film systems with synchrotron radiation
Abstract Spintronics is a research field involving a wide variety of different magnetic materials. Synchrotron radiation in the VUV and soft X-ray regime is ideally suited to investigate the relationships between magnetic properties and electronic structure of spintronics thin film stacks. Complex layered structures and nanomagnets are the main building blocks for current and future spintronics applications. In this contribution we describe the study of spintronics model systems with respect to the static and dynamic behavior with an emphasis on interfaces.
Electronic structure of EuO spin filter tunnel contacts directly on silicon
We present an electronic structure study of a magnetic oxide/ semiconductor model system, EuO on silicon, which is dedicated for efficient spin injection and spin detection in silicon-based spintronics devices. A combined electronic structure analysis of Eu core levels and valence bands using hard X-ray photoemission spectroscopy was performed to quantify the nearly ideal stoichiometry of EuO “spin filter” tunnel barriers directly on silicon, and the absence of silicon oxide at the EuO/Si interface. These results provide evidence for the successful integration of a magnetic oxide tunnel barrier with silicon, paving the way for the future integration of magnetic oxides into functional spintr…
Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Electronic structure of delta-doped $La:SrTiO_{3}$ layers by hard X-ray photoelectron spectroscopy
We have employed hard x-ray photoemission (HAXPES) to study a delta-doped SrTiO3 layer that consisted of a 3-nm thickness of La-doped SrTiO3 with 6% La embedded in a SrTiO3 film. Results are compared to a thick, uniformily doped La:SrTiO3 layer. We find no indication of a band offset for the delta-doped layer, but evidence of the presence of Ti3+ in both the thick sample and the delta-layer, and indications of a density of states increase near the Fermi energy in the delta-doped layer. These results further demonstrate that HAXPES is a powerful tool for the non-destructive investigation of deeply buried doped layers.
Electronic Structure Changes across the Metamagnetic Transition in FeRh via Hard X-Ray Photoemission
International audience; Stoichiometric FeRh undergoes a temperature-induced antiferromagnetic (AFM) to ferromagnetic (FM) transition at similar to 350 K. In this Letter, changes in the electronic structure accompanying this transition are investigated in epitaxial FeRh thin films via bulk-sensitive valence-band and core-level hard x-ray photoelectron spectroscopy with a photon energy of 5.95 keV. Clear differences between the AFM and FM states are observed across the entire valence-band spectrum and these are well reproduced using density-functional theory. Changes in the 2p core levels of Fe are also observed and interpreted using Anderson impurity model calculations. These results indicat…
Chemical stability of the magnetic oxide EuO directly on silicon observed by hard x-ray photoemission spectroscopy
We present a detailed study of the electronic structure and chemical state of high-quality stoichiometric EuO and O-rich ${\mathrm{Eu}}_{1}{\mathrm{O}}_{1+x}$ thin films grown directly on silicon without any buffer layer using hard x-ray photoemission spectroscopy (HAXPES). We determine the EuO oxidation state from a consistent quantitative peak analysis of $4f$ valence band and $3d$ core-level spectra. The results prove that nearly ideal, stoichiometric, and homogeneous EuO thin films can be grown on silicon, with a uniform depth distribution of divalent Eu cations. Furthermore, we identify the chemical stability of the EuO/silicon interface from Si $2p$ core-level photoemission. This work…