0000000000709061
AUTHOR
Marco Brunella
Global 1-Forms and Vector Fields
In this chapter we recall some fundamental facts concerning holomorphic 1-forms on compact surfaces: Albanese morphism, Castelnuovo–de Franchis Lemma, Bogomolov Lemma. We also discuss the logarithmic case, which is extremely useful in the study of foliations with an invariant curve. Finally we recall the classification of holomorphic vector fields on compact surfaces. All of this is very classical and can be found, for instance, in [2, Chapter IV] and 24, 35].
Feuilletages holomorphes sur les surfaces complexes compactes
Resume On etudie dans cet article les feuilletages holomorphes non singuliers sur les surfaces complexes compactes et on aboutit a une classification essentiellement complete de ces objets. Il y a principalement deux cas aetudier: les surfaces qui possedent une fibration elliptique ou rationnelle, et les surfaces de type general. Dans le premier cas la classification est obtenue en comparant le feuilletage avec la fibration, par exemple en analysant la courbe des tangences entre les deux. Le theoreme d'annulation de Bott et les travaux de Kodaira sur les surfaces complexes seront les ingrediants principaux. Dans le deuxieme cas le point central est la construction d'une metrique transverse …
The Rationality Criterion
In this chapter we explain a remarkable theorem of Miyaoka [32] which asserts that a foliation whose cotangent bundle is not pseudoeffective is a foliation by rational curves. The original Miyaoka’s proof can be thought as a foliated version of Mori’s technique of construction of rational curves by deformations of morphisms in positive characteristic [33].
Sur les courbes intégrales propres des champs de vecteurs polynomiaux
Some Special Foliations
In this chapter we study two classes of ubiquitous foliations: Riccati foliations and turbulent foliations. A section will also be devoted to a very special foliation, which will play an important role in the minimal model theory.
Variétés complexes, feuilletages, uniformisation
International audience
On transversely holomorphic flows I
Minimal models of foliated algebraic surfaces
MODELES MINIMAUX DES SURFACES ALGEBRIQUES FEUILLETEES. -Nous etudions les feuilletages holomorphes sur les surfaces algebriques du point de vue de la geometrie birationnelle. Apres avoir introduit une notion de modele minimal, nous classifions les feuilletages qui n'ont pas de modele minimal dans leur classe d'isomorphisme birationnel. Comme corollaire on obtient un resultat concernant la dynamique des diffeomorphismes polynomiaux.
Kähler manifolds with split tangent bundle
( Varietes kahleriennes a fibre tangent scinde). - On etudie dans cet article les varietes kahleriennes compactes dont le fibre tangent se decompose en somme directe de sous-fibres. En particulier, on montre que si le fibre tangent se decompose en somme directe de sous-fibres en droites, alors la variete est uniformisee par un produit de courbes. Les methodes sont issues de la theorie des feuilletages de (co)dimension 1.
Numerical Kodaira Dimension
In this chapter we study, following [30] , the first properties of the Zariski decomposition of the cotangent bundle of a nonrational foliation. In particular, we shall give a detailed description of the negative part of that Zariski decomposition, and we shall obtain a detailed classification of foliations whose Zariski decomposition is reduced to its negative part (i.e. foliations of numerical Kodaira dimension 0). We shall also discuss the “singular” point of view adopted in [30].
Subharmonic variation of the leafwise Poincar� metric
Let X be a compact complex algebraic surface and let F be a holomorphic foliation, possibly with singularities, on X. On each leaf of F we put its Poincare metric (this will be defined below in more precise terms). We thus obtain a (singular) hermitian metric on the tangent bundle TF of F , and dually a (singular) hermitian metric on the canonical bundle KF = T ∗ F of F . The main aim of this paper is to prove that this metric on KF has positive curvature, in the sense of currents. Of course, the positivity of the curvature in the leaf direction is an immediate consequence of the definitions; the nontrivial fact is that the curvature is positive also in the directions transverse to the leaf…
Foliations and Line Bundles
In this chapter we start the global study of foliations on complex surfaces. The most basic global invariants which may be associated with such a foliation are its normal and tangent bundles, and here we shall prove several formulae and study several examples concerning the calculation of these bundles. We shall mainly follow the presentation given in [5]; the book [20] may also be of valuable help.