0000000000709061

AUTHOR

Marco Brunella

showing 12 related works from this author

Global 1-Forms and Vector Fields

2014

In this chapter we recall some fundamental facts concerning holomorphic 1-forms on compact surfaces: Albanese morphism, Castelnuovo–de Franchis Lemma, Bogomolov Lemma. We also discuss the logarithmic case, which is extremely useful in the study of foliations with an invariant curve. Finally we recall the classification of holomorphic vector fields on compact surfaces. All of this is very classical and can be found, for instance, in [2, Chapter IV] and 24, 35].

Pure mathematicsMathematics::Algebraic GeometryMorphismLogarithmHolomorphic functionKodaira dimensionVector fieldInvariant (mathematics)Zero divisorHirzebruch surfaceMathematics
researchProduct

Feuilletages holomorphes sur les surfaces complexes compactes

1997

Resume On etudie dans cet article les feuilletages holomorphes non singuliers sur les surfaces complexes compactes et on aboutit a une classification essentiellement complete de ces objets. Il y a principalement deux cas aetudier: les surfaces qui possedent une fibration elliptique ou rationnelle, et les surfaces de type general. Dans le premier cas la classification est obtenue en comparant le feuilletage avec la fibration, par exemple en analysant la courbe des tangences entre les deux. Le theoreme d'annulation de Bott et les travaux de Kodaira sur les surfaces complexes seront les ingrediants principaux. Dans le deuxieme cas le point central est la construction d'une metrique transverse …

PhysicsGeneral MathematicsHumanitiesAnnales Scientifiques de l’École Normale Supérieure
researchProduct

The Rationality Criterion

2014

In this chapter we explain a remarkable theorem of Miyaoka [32] which asserts that a foliation whose cotangent bundle is not pseudoeffective is a foliation by rational curves. The original Miyaoka’s proof can be thought as a foliated version of Mori’s technique of construction of rational curves by deformations of morphisms in positive characteristic [33].

Pure mathematicsMathematics::Dynamical SystemsMathematics::Algebraic GeometryMorphismAlgebraic surfaceFoliation (geology)Principle of rationalityCotangent bundleRationalityMathematics::Differential GeometryMathematics::Symplectic GeometryEcological rationalityMathematics
researchProduct

Sur les courbes intégrales propres des champs de vecteurs polynomiaux

1998

Geometry and TopologyHumanitiesMathematicsTopology
researchProduct

Some Special Foliations

2014

In this chapter we study two classes of ubiquitous foliations: Riccati foliations and turbulent foliations. A section will also be devoted to a very special foliation, which will play an important role in the minimal model theory.

Section (fiber bundle)Minimal modelPure mathematicsMathematics::Dynamical SystemsMonodromyFoliation (geology)Mathematics::Differential GeometryMathematics::Symplectic GeometryMathematics
researchProduct

On transversely holomorphic flows I

1996

Pure mathematicsGeneral MathematicsHolomorphic functionMathematicsInventiones Mathematicae
researchProduct

Minimal models of foliated algebraic surfaces

1999

MODELES MINIMAUX DES SURFACES ALGEBRIQUES FEUILLETEES. -Nous etudions les feuilletages holomorphes sur les surfaces algebriques du point de vue de la geometrie birationnelle. Apres avoir introduit une notion de modele minimal, nous classifions les feuilletages qui n'ont pas de modele minimal dans leur classe d'isomorphisme birationnel. Comme corollaire on obtient un resultat concernant la dynamique des diffeomorphismes polynomiaux.

Pure mathematicsSeparatrixGeneral MathematicsAlgebraic surfaceMathematical analysisFoliation (geology)Minimal modelsMathematicsBulletin de la Société mathématique de France
researchProduct

Kähler manifolds with split tangent bundle

2006

( Varietes kahleriennes a fibre tangent scinde). - On etudie dans cet article les varietes kahleriennes compactes dont le fibre tangent se decompose en somme directe de sous-fibres. En particulier, on montre que si le fibre tangent se decompose en somme directe de sous-fibres en droites, alors la variete est uniformisee par un produit de courbes. Les methodes sont issues de la theorie des feuilletages de (co)dimension 1.

Tangent bundlekähler manifoldsPure mathematicsGeneral Mathematics32Q15 ; 53C15010102 general mathematicsGeometry01 natural sciences[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]010101 applied mathematics[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometry0101 mathematics[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Mathematics::Symplectic GeometryMathematics
researchProduct

Numerical Kodaira Dimension

2014

In this chapter we study, following [30] , the first properties of the Zariski decomposition of the cotangent bundle of a nonrational foliation. In particular, we shall give a detailed description of the negative part of that Zariski decomposition, and we shall obtain a detailed classification of foliations whose Zariski decomposition is reduced to its negative part (i.e. foliations of numerical Kodaira dimension 0). We shall also discuss the “singular” point of view adopted in [30].

Pure mathematicsMathematics::Algebraic GeometryFoliation (geology)Decomposition (computer science)Cotangent bundleKodaira dimensionPoint (geometry)Mathematics::Symplectic GeometryMathematics
researchProduct

Subharmonic variation of the leafwise Poincar� metric

2003

Let X be a compact complex algebraic surface and let F be a holomorphic foliation, possibly with singularities, on X. On each leaf of F we put its Poincare metric (this will be defined below in more precise terms). We thus obtain a (singular) hermitian metric on the tangent bundle TF of F , and dually a (singular) hermitian metric on the canonical bundle KF = T ∗ F of F . The main aim of this paper is to prove that this metric on KF has positive curvature, in the sense of currents. Of course, the positivity of the curvature in the leaf direction is an immediate consequence of the definitions; the nontrivial fact is that the curvature is positive also in the directions transverse to the leaf…

Tangent bundlesymbols.namesakePure mathematicsGeneral MathematicsPoincaré metricsymbolsHolomorphic functionHermitian manifoldDisjoint setsBall (mathematics)QuotientCanonical bundleMathematicsInventiones Mathematicae
researchProduct

Foliations and Line Bundles

2014

In this chapter we start the global study of foliations on complex surfaces. The most basic global invariants which may be associated with such a foliation are its normal and tangent bundles, and here we shall prove several formulae and study several examples concerning the calculation of these bundles. We shall mainly follow the presentation given in [5]; the book [20] may also be of valuable help.

Pure mathematicsLine bundleLine (geometry)Foliation (geology)TangentMathematics::Symplectic GeometryMathematics
researchProduct

Variétés complexes, feuilletages, uniformisation

2012

International audience

[MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV][MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]ComputingMilieux_MISCELLANEOUS
researchProduct