0000000000719318
AUTHOR
S. Janos
Tracking with heavily irradiated silicon detectors operated at cryogenic temperatures
In this work we show that a heavily irradiated double-sided silicon microstrip detector recovers its performance when operated at cryogenic temperatures. A DELPHI microstrip detector, irradiated to a fluence of /spl sim/4/spl times/10/sup 14/ p/cm/sup 2/, no longer operational at room temperature, cannot be distinguished from a non-irradiated one when operated at T<120 K. Besides confirming the previously observed 'Lazarus effect' in single diodes, these results establish, for the first time, the possibility of using standard silicon detectors for tracking applications in extremely demanding radiation environments.
Cryogenic operation of silicon detectors
This paper reports on measurements at cryogenic temperatures of a silicon microstrip detector irradiated with 24 GeV protons to a #uence of 3.5]1014 p/cm2 and of a p}n junction diode detector irradiated to a similar #uence. At temperatures below 130 K a recovery of charge collection e$ciency and resolution is observed. Under reverse bias conditions this recovery degrades in time towards some saturated value. The recovery is interpreted qualitatively as
Charge collection efficiency and resolution of an irradiated double-sided silicon microstrip detector operated at cryogenic temperatures
Abstract This paper presents results on the measurement of the cluster shapes, resolution and charge collection efficiency of a double-sided silicon microstrip detector after irradiation with 24 GeV protons to a fluence of 3.5×10 14 p/cm 2 and operated at cryogenic temperatures. An empirical model is presented which describes the expected cluster shapes as a function of depletion depth, and is shown to agree with the data. It is observed that the clusters on the p-side broaden if the detector is under-depleted, leading to a degradation of resolution and efficiency. The model is used to make predictions for detector types envisaged for the LHC experiments. The results also show that at cryo…